Provide type hints for pass-through Langchain and Llama-index objects (#95)
This commit is contained in:
committed by
GitHub
parent
e34b1e4c6d
commit
0ce3a8832f
@@ -1,4 +1,15 @@
|
||||
from .base import BaseEmbeddings
|
||||
from .openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
|
||||
from .langchain_based import (
|
||||
AzureOpenAIEmbeddings,
|
||||
CohereEmbdeddings,
|
||||
HuggingFaceEmbeddings,
|
||||
OpenAIEmbeddings,
|
||||
)
|
||||
|
||||
__all__ = ["BaseEmbeddings", "OpenAIEmbeddings", "AzureOpenAIEmbeddings"]
|
||||
__all__ = [
|
||||
"BaseEmbeddings",
|
||||
"OpenAIEmbeddings",
|
||||
"AzureOpenAIEmbeddings",
|
||||
"CohereEmbdeddings",
|
||||
"HuggingFaceEmbeddings",
|
||||
]
|
||||
|
@@ -1,10 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import Type
|
||||
|
||||
from langchain.schema.embeddings import Embeddings as LCEmbeddings
|
||||
from theflow import Param
|
||||
|
||||
from kotaemon.base import BaseComponent, Document, DocumentWithEmbedding
|
||||
|
||||
@@ -15,52 +11,3 @@ class BaseEmbeddings(BaseComponent):
|
||||
self, text: str | list[str] | Document | list[Document]
|
||||
) -> list[DocumentWithEmbedding]:
|
||||
...
|
||||
|
||||
|
||||
class LangchainEmbeddings(BaseEmbeddings):
|
||||
_lc_class: Type[LCEmbeddings]
|
||||
|
||||
def __init__(self, **params):
|
||||
if self._lc_class is None:
|
||||
raise AttributeError(
|
||||
"Should set _lc_class attribute to the LLM class from Langchain "
|
||||
"if using LLM from Langchain"
|
||||
)
|
||||
|
||||
self._kwargs: dict = {}
|
||||
for param in list(params.keys()):
|
||||
if param in self._lc_class.__fields__: # type: ignore
|
||||
self._kwargs[param] = params.pop(param)
|
||||
super().__init__(**params)
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name in self._lc_class.__fields__:
|
||||
self._kwargs[name] = value
|
||||
else:
|
||||
super().__setattr__(name, value)
|
||||
|
||||
@Param.auto(cache=False)
|
||||
def agent(self):
|
||||
return self._lc_class(**self._kwargs)
|
||||
|
||||
def run(self, text):
|
||||
input_: list[str] = []
|
||||
if not isinstance(text, list):
|
||||
text = [text]
|
||||
|
||||
for item in text:
|
||||
if isinstance(item, str):
|
||||
input_.append(item)
|
||||
elif isinstance(item, Document):
|
||||
input_.append(item.text)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid input type {type(item)}, should be str or Document"
|
||||
)
|
||||
|
||||
embeddings = self.agent.embed_documents(input_)
|
||||
|
||||
return [
|
||||
DocumentWithEmbedding(text=each_text, embedding=each_embedding)
|
||||
for each_text, each_embedding in zip(input_, embeddings)
|
||||
]
|
||||
|
@@ -1,12 +0,0 @@
|
||||
from langchain.embeddings import CohereEmbeddings as LCCohereEmbeddings
|
||||
|
||||
from kotaemon.embeddings.base import LangchainEmbeddings
|
||||
|
||||
|
||||
class CohereEmbdeddings(LangchainEmbeddings):
|
||||
"""Cohere embeddings.
|
||||
|
||||
This class wraps around the Langchain CohereEmbeddings class.
|
||||
"""
|
||||
|
||||
_lc_class = LCCohereEmbeddings
|
@@ -1,12 +0,0 @@
|
||||
from langchain.embeddings import HuggingFaceBgeEmbeddings as LCHuggingFaceEmbeddings
|
||||
|
||||
from kotaemon.embeddings.base import LangchainEmbeddings
|
||||
|
||||
|
||||
class HuggingFaceEmbeddings(LangchainEmbeddings):
|
||||
"""HuggingFace embeddings
|
||||
|
||||
This class wraps around the Langchain HuggingFaceEmbeddings class
|
||||
"""
|
||||
|
||||
_lc_class = LCHuggingFaceEmbeddings
|
194
knowledgehub/embeddings/langchain_based.py
Normal file
194
knowledgehub/embeddings/langchain_based.py
Normal file
@@ -0,0 +1,194 @@
|
||||
from typing import Optional
|
||||
|
||||
from kotaemon.base import Document, DocumentWithEmbedding
|
||||
|
||||
from .base import BaseEmbeddings
|
||||
|
||||
|
||||
class LCEmbeddingMixin:
|
||||
def _get_lc_class(self):
|
||||
raise NotImplementedError(
|
||||
"Please return the relevant Langchain class in in _get_lc_class"
|
||||
)
|
||||
|
||||
def __init__(self, **params):
|
||||
self._lc_class = self._get_lc_class()
|
||||
self._obj = self._lc_class(**params)
|
||||
self._kwargs: dict = params
|
||||
|
||||
super().__init__()
|
||||
|
||||
def run(self, text):
|
||||
input_: list[str] = []
|
||||
if not isinstance(text, list):
|
||||
text = [text]
|
||||
|
||||
for item in text:
|
||||
if isinstance(item, str):
|
||||
input_.append(item)
|
||||
elif isinstance(item, Document):
|
||||
input_.append(item.text)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid input type {type(item)}, should be str or Document"
|
||||
)
|
||||
|
||||
embeddings = self._obj.embed_documents(input_)
|
||||
|
||||
return [
|
||||
DocumentWithEmbedding(text=each_text, embedding=each_embedding)
|
||||
for each_text, each_embedding in zip(input_, embeddings)
|
||||
]
|
||||
|
||||
def __repr__(self):
|
||||
kwargs = []
|
||||
for key, value_obj in self._kwargs.items():
|
||||
value = repr(value_obj)
|
||||
kwargs.append(f"{key}={value}")
|
||||
kwargs_repr = ", ".join(kwargs)
|
||||
return f"{self.__class__.__name__}({kwargs_repr})"
|
||||
|
||||
def __str__(self):
|
||||
kwargs = []
|
||||
for key, value_obj in self._kwargs.items():
|
||||
value = str(value_obj)
|
||||
if len(value) > 20:
|
||||
value = f"{value[:15]}..."
|
||||
kwargs.append(f"{key}={value}")
|
||||
kwargs_repr = ", ".join(kwargs)
|
||||
return f"{self.__class__.__name__}({kwargs_repr})"
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name == "_lc_class":
|
||||
return super().__setattr__(name, value)
|
||||
|
||||
if name in self._lc_class.__fields__:
|
||||
self._kwargs[name] = value
|
||||
self._obj = self._lc_class(**self._kwargs)
|
||||
else:
|
||||
super().__setattr__(name, value)
|
||||
|
||||
def __getattr__(self, name):
|
||||
if name in self._kwargs:
|
||||
return self._kwargs[name]
|
||||
return getattr(self._obj, name)
|
||||
|
||||
def dump(self):
|
||||
return {
|
||||
"__type__": f"{self.__module__}.{self.__class__.__qualname__}",
|
||||
**self._kwargs,
|
||||
}
|
||||
|
||||
def specs(self, path: str):
|
||||
path = path.strip(".")
|
||||
if "." in path:
|
||||
raise ValueError("path should not contain '.'")
|
||||
|
||||
if path in self._lc_class.__fields__:
|
||||
return {
|
||||
"__type__": "theflow.base.ParamAttr",
|
||||
"refresh_on_set": True,
|
||||
"strict_type": True,
|
||||
}
|
||||
|
||||
raise ValueError(f"Invalid param {path}")
|
||||
|
||||
|
||||
class OpenAIEmbeddings(LCEmbeddingMixin, BaseEmbeddings):
|
||||
"""Wrapper around Langchain's OpenAI embedding, focusing on key parameters"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str = "text-embedding-ada-002",
|
||||
openai_api_version: Optional[str] = None,
|
||||
openai_api_base: Optional[str] = None,
|
||||
openai_api_type: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None,
|
||||
request_timeout: Optional[float] = None,
|
||||
**params,
|
||||
):
|
||||
super().__init__(
|
||||
model=model,
|
||||
openai_api_version=openai_api_version,
|
||||
openai_api_base=openai_api_base,
|
||||
openai_api_type=openai_api_type,
|
||||
openai_api_key=openai_api_key,
|
||||
request_timeout=request_timeout,
|
||||
**params,
|
||||
)
|
||||
|
||||
def _get_lc_class(self):
|
||||
import langchain.embeddings
|
||||
|
||||
return langchain.emebddings.OpenAIEmbeddings
|
||||
|
||||
|
||||
class AzureOpenAIEmbeddings(LCEmbeddingMixin, BaseEmbeddings):
|
||||
"""Wrapper around Langchain's AzureOpenAI embedding, focusing on key parameters"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
azure_endpoint: Optional[str] = None,
|
||||
deployment: Optional[str] = None,
|
||||
openai_api_key: Optional[str] = None,
|
||||
openai_api_version: Optional[str] = None,
|
||||
request_timeout: Optional[float] = None,
|
||||
**params,
|
||||
):
|
||||
super().__init__(
|
||||
azure_endpoint=azure_endpoint,
|
||||
deployment=deployment,
|
||||
openai_api_version=openai_api_version,
|
||||
openai_api_key=openai_api_key,
|
||||
request_timeout=request_timeout,
|
||||
**params,
|
||||
)
|
||||
|
||||
def _get_lc_class(self):
|
||||
import langchain.embeddings
|
||||
|
||||
return langchain.embeddings.AzureOpenAIEmbeddings
|
||||
|
||||
|
||||
class CohereEmbdeddings(LCEmbeddingMixin, BaseEmbeddings):
|
||||
"""Wrapper around Langchain's Cohere embedding, focusing on key parameters"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: str = "embed-english-v2.0",
|
||||
cohere_api_key: Optional[str] = None,
|
||||
truncate: Optional[str] = None,
|
||||
request_timeout: Optional[float] = None,
|
||||
**params,
|
||||
):
|
||||
super().__init__(
|
||||
model=model,
|
||||
cohere_api_key=cohere_api_key,
|
||||
truncate=truncate,
|
||||
request_timeout=request_timeout,
|
||||
**params,
|
||||
)
|
||||
|
||||
def _get_lc_class(self):
|
||||
import langchain.embeddings
|
||||
|
||||
return langchain.embeddings.CohereEmbeddings
|
||||
|
||||
|
||||
class HuggingFaceEmbeddings(LCEmbeddingMixin, BaseEmbeddings):
|
||||
"""Wrapper around Langchain's HuggingFace embedding, focusing on key parameters"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "sentence-transformers/all-mpnet-base-v2",
|
||||
**params,
|
||||
):
|
||||
super().__init__(
|
||||
model_name=model_name,
|
||||
**params,
|
||||
)
|
||||
|
||||
def _get_lc_class(self):
|
||||
import langchain.embeddings
|
||||
|
||||
return langchain.embeddings.HuggingFaceBgeEmbeddings
|
@@ -1,21 +0,0 @@
|
||||
from langchain import embeddings as lcembeddings
|
||||
|
||||
from .base import LangchainEmbeddings
|
||||
|
||||
|
||||
class OpenAIEmbeddings(LangchainEmbeddings):
|
||||
"""OpenAI embeddings.
|
||||
|
||||
This method is wrapped around the Langchain OpenAIEmbeddings class.
|
||||
"""
|
||||
|
||||
_lc_class = lcembeddings.OpenAIEmbeddings
|
||||
|
||||
|
||||
class AzureOpenAIEmbeddings(LangchainEmbeddings):
|
||||
"""Azure OpenAI embeddings.
|
||||
|
||||
This method is wrapped around the Langchain AzureOpenAIEmbeddings class.
|
||||
"""
|
||||
|
||||
_lc_class = lcembeddings.AzureOpenAIEmbeddings
|
Reference in New Issue
Block a user