Separate rerankers, splitters and extractors (#85)
This commit is contained in:
committed by
GitHub
parent
0dede9c82d
commit
2186c5558f
@@ -1,6 +1,8 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Sequence, Union
|
||||
from typing import Optional, Sequence
|
||||
|
||||
from llama_index.readers.base import BaseReader
|
||||
from theflow import Node
|
||||
@@ -8,8 +10,9 @@ from theflow.utils.modules import ObjectInitDeclaration as _
|
||||
|
||||
from kotaemon.base import BaseComponent
|
||||
from kotaemon.embeddings import AzureOpenAIEmbeddings
|
||||
from kotaemon.indexing.doc_parsers import LIDocParser as DocParser
|
||||
from kotaemon.indexing.doc_parsers import TokenSplitter
|
||||
from kotaemon.indices.extractors import BaseDocParser
|
||||
from kotaemon.indices.rankings import BaseReranking
|
||||
from kotaemon.indices.splitters import TokenSplitter
|
||||
from kotaemon.loaders import (
|
||||
AutoReader,
|
||||
DirectoryReader,
|
||||
@@ -19,7 +22,6 @@ from kotaemon.loaders import (
|
||||
)
|
||||
from kotaemon.pipelines.agents import BaseAgent
|
||||
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
|
||||
from kotaemon.pipelines.reranking import BaseRerankingPipeline
|
||||
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
||||
from kotaemon.storages import (
|
||||
BaseDocumentStore,
|
||||
@@ -45,7 +47,7 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
chunk_overlap: int = 256
|
||||
vector_store: BaseVectorStore = _(InMemoryVectorStore)
|
||||
doc_store: BaseDocumentStore = _(InMemoryDocumentStore)
|
||||
doc_parsers: List[DocParser] = []
|
||||
doc_parsers: list[BaseDocParser] = []
|
||||
|
||||
embedding: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings.withx(
|
||||
model="text-embedding-ada-002",
|
||||
@@ -55,9 +57,9 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
chunk_size=16,
|
||||
)
|
||||
|
||||
def get_reader(self, input_files: List[Union[str, Path]]):
|
||||
def get_reader(self, input_files: list[str | Path]):
|
||||
# document parsers
|
||||
file_extractor: Dict[str, BaseReader] = {
|
||||
file_extractor: dict[str, BaseReader | AutoReader] = {
|
||||
".xlsx": PandasExcelReader(),
|
||||
}
|
||||
if self.reader_name == "normal":
|
||||
@@ -89,7 +91,7 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
|
||||
def run(
|
||||
self,
|
||||
file_path_list: Union[List[Union[str, Path]], Union[str, Path]],
|
||||
file_path_list: list[str | Path] | str | Path,
|
||||
force_reindex: Optional[bool] = False,
|
||||
):
|
||||
self.storage_path.mkdir(exist_ok=True)
|
||||
@@ -121,9 +123,7 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
else:
|
||||
self.indexing_vector_pipeline.load(file_storage_path)
|
||||
|
||||
def to_retrieving_pipeline(
|
||||
self, top_k=3, rerankers: Sequence[BaseRerankingPipeline] = []
|
||||
):
|
||||
def to_retrieving_pipeline(self, top_k=3, rerankers: Sequence[BaseReranking] = []):
|
||||
retrieving_pipeline = RetrieveDocumentFromVectorStorePipeline(
|
||||
vector_store=self.vector_store,
|
||||
doc_store=self.doc_store,
|
||||
@@ -141,7 +141,7 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
doc_store=self.doc_store,
|
||||
embedding=self.embedding,
|
||||
llm=llm,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
return qa_pipeline
|
||||
|
||||
@@ -153,7 +153,7 @@ class ReaderIndexingPipeline(BaseComponent):
|
||||
doc_store=self.doc_store,
|
||||
embedding=self.embedding,
|
||||
agent=agent,
|
||||
**kwargs
|
||||
**kwargs,
|
||||
)
|
||||
agent_pipeline.add_search_tool()
|
||||
return agent_pipeline
|
||||
|
Reference in New Issue
Block a user