Improve behavior of simple reasoning (#157)

* Add base reasoning implementation

* Provide explicit async and streaming capability

* Allow refreshing the information panel
This commit is contained in:
Duc Nguyen (john)
2024-03-12 13:03:38 +07:00
committed by GitHub
parent cb01d27d19
commit 2950e6ed02
7 changed files with 174 additions and 28 deletions

View File

@@ -1,5 +1,5 @@
from abc import abstractmethod
from typing import Iterator, Optional
from typing import AsyncGenerator, Iterator, Optional
from theflow import Function, Node, Param, lazy
@@ -43,6 +43,18 @@ class BaseComponent(Function):
if self._queue is not None:
self._queue.put_nowait(output)
def invoke(self, *args, **kwargs) -> Document | list[Document] | None:
...
async def ainvoke(self, *args, **kwargs) -> Document | list[Document] | None:
...
def stream(self, *args, **kwargs) -> Iterator[Document] | None:
...
async def astream(self, *args, **kwargs) -> AsyncGenerator[Document, None] | None:
...
@abstractmethod
def run(
self, *args, **kwargs

View File

@@ -65,6 +65,9 @@ class CitationPipeline(BaseComponent):
llm: BaseLLM
def run(self, context: str, question: str):
return self.invoke(context, question)
def prepare_llm(self, context: str, question: str):
schema = QuestionAnswer.schema()
function = {
"name": schema["title"],
@@ -92,8 +95,37 @@ class CitationPipeline(BaseComponent):
)
),
]
return messages, llm_kwargs
def invoke(self, context: str, question: str):
messages, llm_kwargs = self.prepare_llm(context, question)
try:
print("CitationPipeline: invoking LLM")
llm_output = self.get_from_path("llm").invoke(messages, **llm_kwargs)
print("CitationPipeline: finish invoking LLM")
except Exception as e:
print(e)
return None
function_output = llm_output.messages[0].additional_kwargs["function_call"][
"arguments"
]
output = QuestionAnswer.parse_raw(function_output)
return output
async def ainvoke(self, context: str, question: str):
messages, llm_kwargs = self.prepare_llm(context, question)
try:
print("CitationPipeline: async invoking LLM")
llm_output = await self.get_from_path("llm").ainvoke(messages, **llm_kwargs)
print("CitationPipeline: finish async invoking LLM")
except Exception as e:
print(e)
return None
llm_output = self.llm(messages, **llm_kwargs)
function_output = llm_output.messages[0].additional_kwargs["function_call"][
"arguments"
]

View File

@@ -1,8 +1,22 @@
from typing import AsyncGenerator, Iterator
from langchain_core.language_models.base import BaseLanguageModel
from kotaemon.base import BaseComponent
from kotaemon.base import BaseComponent, LLMInterface
class BaseLLM(BaseComponent):
def to_langchain_format(self) -> BaseLanguageModel:
raise NotImplementedError
def invoke(self, *args, **kwargs) -> LLMInterface:
raise NotImplementedError
async def ainvoke(self, *args, **kwargs) -> LLMInterface:
raise NotImplementedError
def stream(self, *args, **kwargs) -> Iterator[LLMInterface]:
raise NotImplementedError
async def astream(self, *args, **kwargs) -> AsyncGenerator[LLMInterface, None]:
raise NotImplementedError

View File

@@ -1,6 +1,7 @@
from __future__ import annotations
import logging
from typing import AsyncGenerator, Iterator
from kotaemon.base import BaseMessage, HumanMessage, LLMInterface
@@ -10,6 +11,8 @@ logger = logging.getLogger(__name__)
class LCChatMixin:
"""Mixin for langchain based chat models"""
def _get_lc_class(self):
raise NotImplementedError(
"Please return the relevant Langchain class in in _get_lc_class"
@@ -30,18 +33,7 @@ class LCChatMixin:
return self.stream(messages, **kwargs) # type: ignore
return self.invoke(messages, **kwargs)
def invoke(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
"""Generate response from messages
Args:
messages: history of messages to generate response from
**kwargs: additional arguments to pass to the langchain chat model
Returns:
LLMInterface: generated response
"""
def prepare_message(self, messages: str | BaseMessage | list[BaseMessage]):
input_: list[BaseMessage] = []
if isinstance(messages, str):
@@ -51,7 +43,9 @@ class LCChatMixin:
else:
input_ = messages
pred = self._obj.generate(messages=[input_], **kwargs)
return input_
def prepare_response(self, pred):
all_text = [each.text for each in pred.generations[0]]
all_messages = [each.message for each in pred.generations[0]]
@@ -76,10 +70,41 @@ class LCChatMixin:
logits=[],
)
def stream(self, messages: str | BaseMessage | list[BaseMessage], **kwargs):
def invoke(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
"""Generate response from messages
Args:
messages: history of messages to generate response from
**kwargs: additional arguments to pass to the langchain chat model
Returns:
LLMInterface: generated response
"""
input_ = self.prepare_message(messages)
pred = self._obj.generate(messages=[input_], **kwargs)
return self.prepare_response(pred)
async def ainvoke(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
input_ = self.prepare_message(messages)
pred = await self._obj.agenerate(messages=[input_], **kwargs)
return self.prepare_response(pred)
def stream(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> Iterator[LLMInterface]:
for response in self._obj.stream(input=messages, **kwargs):
yield LLMInterface(content=response.content)
async def astream(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> AsyncGenerator[LLMInterface, None]:
async for response in self._obj.astream(input=messages, **kwargs):
yield LLMInterface(content=response.content)
def to_langchain_format(self):
return self._obj
@@ -140,7 +165,7 @@ class LCChatMixin:
raise ValueError(f"Invalid param {path}")
class AzureChatOpenAI(LCChatMixin, ChatLLM):
class AzureChatOpenAI(LCChatMixin, ChatLLM): # type: ignore
def __init__(
self,
azure_endpoint: str | None = None,