Feat/Add ReAct and ReWOO Reasoning Pipelines (#43)
* Add ReactAgentPipeline by wrapping the ReactAgent * Implement stream processing for ReactAgentPipeline and RewooAgentPipeline * Fix highlight_citation in Rewoo and remove highlight_citation from React * Fix importing ktem.llms inside kotaemon * fix: Change Rewoo::solver's output to LLMInterface instead of plain text * Add more user_settings to the RewooAgentPipeline * Fix LLMTool * Add more user_settings to the ReactAgentPipeline * Minor fix * Stream the react agent immediately * Yield the Rewoo progress to info panel * Hide the agent in flowsettings * Remove redundant comments --------- Co-authored-by: trducng <trungduc1992@gmail.com>
This commit is contained in:
329
libs/ktem/ktem/reasoning/react.py
Normal file
329
libs/ktem/ktem/reasoning/react.py
Normal file
@@ -0,0 +1,329 @@
|
||||
import html
|
||||
import logging
|
||||
from typing import AnyStr, Optional, Type
|
||||
|
||||
from ktem.llms.manager import llms
|
||||
from ktem.reasoning.base import BaseReasoning
|
||||
from ktem.utils.generator import Generator
|
||||
from ktem.utils.render import Render
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from kotaemon.agents import (
|
||||
BaseTool,
|
||||
GoogleSearchTool,
|
||||
LLMTool,
|
||||
ReactAgent,
|
||||
WikipediaTool,
|
||||
)
|
||||
from kotaemon.base import BaseComponent, Document, HumanMessage, Node, SystemMessage
|
||||
from kotaemon.llms import ChatLLM, PromptTemplate
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DocSearchArgs(BaseModel):
|
||||
query: str = Field(..., description="a search query as input to the doc search")
|
||||
|
||||
|
||||
class DocSearchTool(BaseTool):
|
||||
name: str = "docsearch"
|
||||
description: str = (
|
||||
"A storage that contains internal documents. If you lack any specific "
|
||||
"private information to answer the question, you can search in this "
|
||||
"document storage. Furthermore, if you are unsure about which document that "
|
||||
"the user refers to, likely the user already selects the target document in "
|
||||
"this document storage, you just need to do normal search. If possible, "
|
||||
"formulate the search query as specific as possible."
|
||||
)
|
||||
args_schema: Optional[Type[BaseModel]] = DocSearchArgs
|
||||
retrievers: list[BaseComponent] = []
|
||||
|
||||
def _run_tool(self, query: AnyStr) -> AnyStr:
|
||||
docs = []
|
||||
doc_ids = []
|
||||
for retriever in self.retrievers:
|
||||
for doc in retriever(text=query):
|
||||
if doc.doc_id not in doc_ids:
|
||||
docs.append(doc)
|
||||
doc_ids.append(doc.doc_id)
|
||||
|
||||
return self.prepare_evidence(docs)
|
||||
|
||||
def prepare_evidence(self, docs, trim_len: int = 4000):
|
||||
evidence = ""
|
||||
table_found = 0
|
||||
|
||||
for _id, retrieved_item in enumerate(docs):
|
||||
retrieved_content = ""
|
||||
page = retrieved_item.metadata.get("page_label", None)
|
||||
source = filename = retrieved_item.metadata.get("file_name", "-")
|
||||
if page:
|
||||
source += f" (Page {page})"
|
||||
if retrieved_item.metadata.get("type", "") == "table":
|
||||
if table_found < 5:
|
||||
retrieved_content = retrieved_item.metadata.get("table_origin", "")
|
||||
if retrieved_content not in evidence:
|
||||
table_found += 1
|
||||
evidence += (
|
||||
f"<br><b>Table from {source}</b>\n"
|
||||
+ retrieved_content
|
||||
+ "\n<br>"
|
||||
)
|
||||
elif retrieved_item.metadata.get("type", "") == "chatbot":
|
||||
retrieved_content = retrieved_item.metadata["window"]
|
||||
evidence += (
|
||||
f"<br><b>Chatbot scenario from {filename} (Row {page})</b>\n"
|
||||
+ retrieved_content
|
||||
+ "\n<br>"
|
||||
)
|
||||
elif retrieved_item.metadata.get("type", "") == "image":
|
||||
retrieved_content = retrieved_item.metadata.get("image_origin", "")
|
||||
retrieved_caption = html.escape(retrieved_item.get_content())
|
||||
evidence += (
|
||||
f"<br><b>Figure from {source}</b>\n" + retrieved_caption + "\n<br>"
|
||||
)
|
||||
else:
|
||||
if "window" in retrieved_item.metadata:
|
||||
retrieved_content = retrieved_item.metadata["window"]
|
||||
else:
|
||||
retrieved_content = retrieved_item.text
|
||||
retrieved_content = retrieved_content.replace("\n", " ")
|
||||
if retrieved_content not in evidence:
|
||||
evidence += (
|
||||
f"<br><b>Content from {source}: </b> "
|
||||
+ retrieved_content
|
||||
+ " \n<br>"
|
||||
)
|
||||
|
||||
print("Retrieved #{}: {}".format(_id, retrieved_content[:100]))
|
||||
print("Score", retrieved_item.metadata.get("relevance_score", None))
|
||||
|
||||
# trim context by trim_len
|
||||
if evidence:
|
||||
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=trim_len,
|
||||
chunk_overlap=0,
|
||||
separator=" ",
|
||||
model_name="gpt-3.5-turbo",
|
||||
)
|
||||
texts = text_splitter.split_text(evidence)
|
||||
evidence = texts[0]
|
||||
|
||||
return Document(content=evidence)
|
||||
|
||||
|
||||
TOOL_REGISTRY = {
|
||||
"Google": GoogleSearchTool(),
|
||||
"Wikipedia": WikipediaTool(),
|
||||
"LLM": LLMTool(),
|
||||
"SearchDoc": DocSearchTool(),
|
||||
}
|
||||
|
||||
DEFAULT_QA_PROMPT = (
|
||||
"Answer the following questions as best you can. Give answer in {lang}. "
|
||||
"You have access to the following tools:\n"
|
||||
"{tool_description}\n"
|
||||
"Use the following format:\n\n"
|
||||
"Question: the input question you must answer\n"
|
||||
"Thought: you should always think about what to do\n\n"
|
||||
"Action: the action to take, should be one of [{tool_names}]\n\n"
|
||||
"Action Input: the input to the action, should be different from the action input "
|
||||
"of the same action in previous steps.\n\n"
|
||||
"Observation: the result of the action\n\n"
|
||||
"... (this Thought/Action/Action Input/Observation can repeat N times)\n"
|
||||
"#Thought: I now know the final answer\n"
|
||||
"Final Answer: the final answer to the original input question\n\n"
|
||||
"Begin! After each Action Input.\n\n"
|
||||
"Question: {instruction}\n"
|
||||
"Thought: {agent_scratchpad}\n"
|
||||
)
|
||||
|
||||
DEFAULT_REWRITE_PROMPT = (
|
||||
"Given the following question, rephrase and expand it "
|
||||
"to help you do better answering. Maintain all information "
|
||||
"in the original question. Keep the question as concise as possible. "
|
||||
"Give answer in {lang}\n"
|
||||
"Original question: {question}\n"
|
||||
"Rephrased question: "
|
||||
)
|
||||
|
||||
|
||||
class RewriteQuestionPipeline(BaseComponent):
|
||||
"""Rewrite user question
|
||||
|
||||
Args:
|
||||
llm: the language model to rewrite question
|
||||
rewrite_template: the prompt template for llm to paraphrase a text input
|
||||
lang: the language of the answer. Currently support English and Japanese
|
||||
"""
|
||||
|
||||
llm: ChatLLM = Node(default_callback=lambda _: llms.get_default())
|
||||
rewrite_template: str = DEFAULT_REWRITE_PROMPT
|
||||
|
||||
lang: str = "English"
|
||||
|
||||
def run(self, question: str) -> Document: # type: ignore
|
||||
prompt_template = PromptTemplate(self.rewrite_template)
|
||||
prompt = prompt_template.populate(question=question, lang=self.lang)
|
||||
messages = [
|
||||
SystemMessage(content="You are a helpful assistant"),
|
||||
HumanMessage(content=prompt),
|
||||
]
|
||||
return self.llm(messages)
|
||||
|
||||
|
||||
class ReactAgentPipeline(BaseReasoning):
|
||||
"""Question answering pipeline using ReAct agent."""
|
||||
|
||||
class Config:
|
||||
allow_extra = True
|
||||
|
||||
retrievers: list[BaseComponent]
|
||||
agent: ReactAgent = ReactAgent.withx()
|
||||
rewrite_pipeline: RewriteQuestionPipeline = RewriteQuestionPipeline.withx()
|
||||
use_rewrite: bool = False
|
||||
|
||||
def prepare_citation(self, step_id, step, output, status) -> Document:
|
||||
header = "<b>Step {id}</b>: {log}".format(id=step_id, log=step.log)
|
||||
content = (
|
||||
"<b>Action</b>: <em>{tool}[{input}]</em>\n\n<b>Output</b>: {output}"
|
||||
).format(
|
||||
tool=step.tool if status == "thinking" else "",
|
||||
input=step.tool_input.replace("\n", "") if status == "thinking" else "",
|
||||
output=output if status == "thinking" else "Finished",
|
||||
)
|
||||
return Document(
|
||||
channel="info",
|
||||
content=Render.collapsible(
|
||||
header=header,
|
||||
content=Render.table(content),
|
||||
open=True,
|
||||
),
|
||||
)
|
||||
|
||||
async def ainvoke( # type: ignore
|
||||
self, message, conv_id: str, history: list, **kwargs # type: ignore
|
||||
) -> Document:
|
||||
if self.use_rewrite:
|
||||
rewrite = await self.rewrite_pipeline(question=message)
|
||||
message = rewrite.text
|
||||
|
||||
answer = self.agent(message)
|
||||
self.report_output(Document(content=answer.text, channel="chat"))
|
||||
|
||||
intermediate_steps = answer.intermediate_steps
|
||||
for _, step_output in intermediate_steps:
|
||||
self.report_output(Document(content=step_output, channel="info"))
|
||||
|
||||
self.report_output(None)
|
||||
return answer
|
||||
|
||||
def stream(self, message, conv_id: str, history: list, **kwargs):
|
||||
if self.use_rewrite:
|
||||
rewrite = self.rewrite_pipeline(question=message)
|
||||
message = rewrite.text
|
||||
yield Document(
|
||||
channel="info",
|
||||
content=f"Rewrote the message to: {rewrite.text}",
|
||||
)
|
||||
|
||||
output_stream = Generator(self.agent.stream(message))
|
||||
idx = 0
|
||||
for item in output_stream:
|
||||
idx += 1
|
||||
if item.status == "thinking":
|
||||
step, step_output = item.intermediate_steps
|
||||
yield Document(
|
||||
channel="info",
|
||||
content=self.prepare_citation(idx, step, step_output, item.status),
|
||||
)
|
||||
else:
|
||||
yield Document(
|
||||
channel="chat",
|
||||
content=item.text,
|
||||
)
|
||||
step, step_output = item.intermediate_steps
|
||||
yield Document(
|
||||
channel="info",
|
||||
content=self.prepare_citation(idx, step, step_output, item.status),
|
||||
)
|
||||
|
||||
return output_stream.value
|
||||
|
||||
@classmethod
|
||||
def get_pipeline(
|
||||
cls, settings: dict, states: dict, retrievers: list | None = None
|
||||
) -> BaseReasoning:
|
||||
_id = cls.get_info()["id"]
|
||||
prefix = f"reasoning.options.{_id}"
|
||||
|
||||
llm_name = settings[f"{prefix}.llm"]
|
||||
llm = llms.get(llm_name, llms.get_default())
|
||||
|
||||
pipeline = ReactAgentPipeline(retrievers=retrievers)
|
||||
pipeline.agent.llm = llm
|
||||
pipeline.agent.max_iterations = settings[f"{prefix}.max_iterations"]
|
||||
tools = []
|
||||
for tool_name in settings[f"reasoning.options.{_id}.tools"]:
|
||||
tool = TOOL_REGISTRY[tool_name]
|
||||
if tool_name == "SearchDoc":
|
||||
tool.retrievers = retrievers
|
||||
elif tool_name == "LLM":
|
||||
tool.llm = llm
|
||||
tools.append(tool)
|
||||
pipeline.agent.plugins = tools
|
||||
pipeline.agent.output_lang = {"en": "English", "ja": "Japanese"}.get(
|
||||
settings["reasoning.lang"], "English"
|
||||
)
|
||||
pipeline.use_rewrite = states.get("app", {}).get("regen", False)
|
||||
pipeline.agent.prompt_template = PromptTemplate(settings[f"{prefix}.qa_prompt"])
|
||||
|
||||
return pipeline
|
||||
|
||||
@classmethod
|
||||
def get_user_settings(cls) -> dict:
|
||||
llm = ""
|
||||
llm_choices = [("(default)", "")]
|
||||
try:
|
||||
llm_choices += [(_, _) for _ in llms.options().keys()]
|
||||
except Exception as e:
|
||||
logger.exception(f"Failed to get LLM options: {e}")
|
||||
|
||||
tool_choices = ["Wikipedia", "Google", "LLM", "SearchDoc"]
|
||||
|
||||
return {
|
||||
"llm": {
|
||||
"name": "Language model",
|
||||
"value": llm,
|
||||
"component": "dropdown",
|
||||
"choices": llm_choices,
|
||||
"info": (
|
||||
"The language model to use for generating the answer. If None, "
|
||||
"the application default language model will be used."
|
||||
),
|
||||
},
|
||||
"tools": {
|
||||
"name": "Tools for knowledge retrieval",
|
||||
"value": ["SearchDoc", "LLM"],
|
||||
"component": "checkboxgroup",
|
||||
"choices": tool_choices,
|
||||
},
|
||||
"max_iterations": {
|
||||
"name": "Maximum number of iterations the LLM can go through",
|
||||
"value": 5,
|
||||
"component": "number",
|
||||
},
|
||||
"qa_prompt": {
|
||||
"name": "QA Prompt",
|
||||
"value": DEFAULT_QA_PROMPT,
|
||||
},
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_info(cls) -> dict:
|
||||
return {
|
||||
"id": "ReAct",
|
||||
"name": "ReAct Agent",
|
||||
"description": "Implementing ReAct paradigm",
|
||||
}
|
462
libs/ktem/ktem/reasoning/rewoo.py
Normal file
462
libs/ktem/ktem/reasoning/rewoo.py
Normal file
@@ -0,0 +1,462 @@
|
||||
import html
|
||||
import logging
|
||||
from difflib import SequenceMatcher
|
||||
from typing import AnyStr, Generator, Optional, Type
|
||||
|
||||
from ktem.llms.manager import llms
|
||||
from ktem.reasoning.base import BaseReasoning
|
||||
from ktem.utils.generator import Generator as GeneratorWrapper
|
||||
from ktem.utils.render import Render
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from kotaemon.agents import (
|
||||
BaseTool,
|
||||
GoogleSearchTool,
|
||||
LLMTool,
|
||||
RewooAgent,
|
||||
WikipediaTool,
|
||||
)
|
||||
from kotaemon.base import BaseComponent, Document, HumanMessage, Node, SystemMessage
|
||||
from kotaemon.llms import ChatLLM, PromptTemplate
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
DEFAULT_PLANNER_PROMPT = (
|
||||
"You are an AI agent who makes step-by-step plans to solve a problem under the "
|
||||
"help of external tools. For each step, make one plan followed by one tool-call, "
|
||||
"which will be executed later to retrieve evidence for that step.\n"
|
||||
"You should store each evidence into a distinct variable #E1, #E2, #E3 ... that "
|
||||
"can be referred to in later tool-call inputs.\n\n"
|
||||
"##Available Tools##\n"
|
||||
"{tool_description}\n\n"
|
||||
"##Output Format (Replace '<...>')##\n"
|
||||
"#Plan1: <describe your plan here>\n"
|
||||
"#E1: <toolname>[<input here>] (eg. Search[What is Python])\n"
|
||||
"#Plan2: <describe next plan>\n"
|
||||
"#E2: <toolname>[<input here, you can use #E1 to represent its expected output>]\n"
|
||||
"And so on...\n\n"
|
||||
"##Your Task##\n"
|
||||
"{task}\n\n"
|
||||
"##Now Begin##\n"
|
||||
)
|
||||
|
||||
DEFAULT_SOLVER_PROMPT = (
|
||||
"You are an AI agent who solves a problem with my assistance. I will provide "
|
||||
"step-by-step plans(#Plan) and evidences(#E) that could be helpful.\n"
|
||||
"Your task is to briefly summarize each step, then make a short final conclusion "
|
||||
"for your task. Give answer in {lang}.\n\n"
|
||||
"##My Plans and Evidences##\n"
|
||||
"{plan_evidence}\n\n"
|
||||
"##Example Output##\n"
|
||||
"First, I <did something> , and I think <...>; Second, I <...>, "
|
||||
"and I think <...>; ....\n"
|
||||
"So, <your conclusion>.\n\n"
|
||||
"##Your Task##\n"
|
||||
"{task}\n\n"
|
||||
"##Now Begin##\n"
|
||||
)
|
||||
|
||||
|
||||
class DocSearchArgs(BaseModel):
|
||||
query: str = Field(..., description="a search query as input to the doc search")
|
||||
|
||||
|
||||
class DocSearchTool(BaseTool):
|
||||
name: str = "docsearch"
|
||||
description: str = (
|
||||
"A storage that contains internal documents. If you lack any specific "
|
||||
"private information to answer the question, you can search in this "
|
||||
"document storage. Furthermore, if you are unsure about which document that "
|
||||
"the user refers to, likely the user already selects the target document in "
|
||||
"this document storage, you just need to do normal search. If possible, "
|
||||
"formulate the search query as specific as possible."
|
||||
)
|
||||
args_schema: Optional[Type[BaseModel]] = DocSearchArgs
|
||||
retrievers: list[BaseComponent] = []
|
||||
|
||||
def _run_tool(self, query: AnyStr) -> AnyStr:
|
||||
docs = []
|
||||
doc_ids = []
|
||||
for retriever in self.retrievers:
|
||||
for doc in retriever(text=query):
|
||||
if doc.doc_id not in doc_ids:
|
||||
docs.append(doc)
|
||||
doc_ids.append(doc.doc_id)
|
||||
|
||||
return self.prepare_evidence(docs)
|
||||
|
||||
def prepare_evidence(self, docs, trim_len: int = 3000):
|
||||
evidence = ""
|
||||
table_found = 0
|
||||
|
||||
for _id, retrieved_item in enumerate(docs):
|
||||
retrieved_content = ""
|
||||
page = retrieved_item.metadata.get("page_label", None)
|
||||
source = filename = retrieved_item.metadata.get("file_name", "-")
|
||||
if page:
|
||||
source += f" (Page {page})"
|
||||
if retrieved_item.metadata.get("type", "") == "table":
|
||||
if table_found < 5:
|
||||
retrieved_content = retrieved_item.metadata.get("table_origin", "")
|
||||
if retrieved_content not in evidence:
|
||||
table_found += 1
|
||||
evidence += (
|
||||
f"<br><b>Table from {source}</b>\n"
|
||||
+ retrieved_content
|
||||
+ "\n<br>"
|
||||
)
|
||||
elif retrieved_item.metadata.get("type", "") == "chatbot":
|
||||
retrieved_content = retrieved_item.metadata["window"]
|
||||
evidence += (
|
||||
f"<br><b>Chatbot scenario from {filename} (Row {page})</b>\n"
|
||||
+ retrieved_content
|
||||
+ "\n<br>"
|
||||
)
|
||||
elif retrieved_item.metadata.get("type", "") == "image":
|
||||
retrieved_content = retrieved_item.metadata.get("image_origin", "")
|
||||
retrieved_caption = html.escape(retrieved_item.get_content())
|
||||
# PWS doesn't support VLM for images, we will just store the caption
|
||||
evidence += (
|
||||
f"<br><b>Figure from {source}</b>\n" + retrieved_caption + "\n<br>"
|
||||
)
|
||||
else:
|
||||
if "window" in retrieved_item.metadata:
|
||||
retrieved_content = retrieved_item.metadata["window"]
|
||||
else:
|
||||
retrieved_content = retrieved_item.text
|
||||
retrieved_content = retrieved_content.replace("\n", " ")
|
||||
if retrieved_content not in evidence:
|
||||
evidence += (
|
||||
f"<br><b>Content from {source}: </b> "
|
||||
+ retrieved_content
|
||||
+ " \n<br>"
|
||||
)
|
||||
|
||||
print("Retrieved #{}: {}".format(_id, retrieved_content))
|
||||
print("Score", retrieved_item.metadata.get("relevance_score", None))
|
||||
|
||||
# trim context by trim_len
|
||||
if evidence:
|
||||
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
||||
chunk_size=trim_len,
|
||||
chunk_overlap=0,
|
||||
separator=" ",
|
||||
model_name="gpt-3.5-turbo",
|
||||
)
|
||||
texts = text_splitter.split_text(evidence)
|
||||
evidence = texts[0]
|
||||
|
||||
return Document(content=evidence)
|
||||
|
||||
|
||||
TOOL_REGISTRY = {
|
||||
"Google": GoogleSearchTool(),
|
||||
"Wikipedia": WikipediaTool(),
|
||||
"LLM": LLMTool(),
|
||||
"SearchDoc": DocSearchTool(),
|
||||
}
|
||||
|
||||
DEFAULT_REWRITE_PROMPT = (
|
||||
"Given the following question, rephrase and expand it "
|
||||
"to help you do better answering. Maintain all information "
|
||||
"in the original question. Keep the question as concise as possible. "
|
||||
"Give answer in {lang}\n"
|
||||
"Original question: {question}\n"
|
||||
"Rephrased question: "
|
||||
)
|
||||
|
||||
|
||||
class RewriteQuestionPipeline(BaseComponent):
|
||||
"""Rewrite user question
|
||||
|
||||
Args:
|
||||
llm: the language model to rewrite question
|
||||
rewrite_template: the prompt template for llm to paraphrase a text input
|
||||
lang: the language of the answer. Currently support English and Japanese
|
||||
"""
|
||||
|
||||
llm: ChatLLM = Node(default_callback=lambda _: llms.get_default())
|
||||
rewrite_template: str = DEFAULT_REWRITE_PROMPT
|
||||
|
||||
lang: str = "English"
|
||||
|
||||
def run(self, question: str) -> Document: # type: ignore
|
||||
prompt_template = PromptTemplate(self.rewrite_template)
|
||||
prompt = prompt_template.populate(question=question, lang=self.lang)
|
||||
messages = [
|
||||
SystemMessage(content="You are a helpful assistant"),
|
||||
HumanMessage(content=prompt),
|
||||
]
|
||||
return self.llm(messages)
|
||||
|
||||
|
||||
def find_text(llm_output, context):
|
||||
sentence_list = llm_output.split("\n")
|
||||
matches = []
|
||||
for sentence in sentence_list:
|
||||
match = SequenceMatcher(
|
||||
None, sentence, context, autojunk=False
|
||||
).find_longest_match()
|
||||
matches.append((match.b, match.b + match.size))
|
||||
return matches
|
||||
|
||||
|
||||
class RewooAgentPipeline(BaseReasoning):
|
||||
"""Question answering pipeline using ReWOO Agent."""
|
||||
|
||||
class Config:
|
||||
allow_extra = True
|
||||
|
||||
retrievers: list[BaseComponent]
|
||||
agent: RewooAgent = RewooAgent.withx()
|
||||
rewrite_pipeline: RewriteQuestionPipeline = RewriteQuestionPipeline.withx()
|
||||
use_rewrite: bool = False
|
||||
enable_citation: bool = False
|
||||
|
||||
def format_info_panel(self, worker_log):
|
||||
header = ""
|
||||
content = []
|
||||
|
||||
for line in worker_log.splitlines():
|
||||
if line.startswith("#Plan"):
|
||||
# line starts with #Plan should be marked as a new segment
|
||||
header = line
|
||||
elif line.startswith("#"):
|
||||
# stop markdown from rendering big headers
|
||||
line = "\\" + line
|
||||
content.append(line)
|
||||
else:
|
||||
content.append(line)
|
||||
|
||||
if not header:
|
||||
return
|
||||
|
||||
return Document(
|
||||
channel="info",
|
||||
content=Render.collapsible(
|
||||
header=header,
|
||||
content=Render.table("\n".join(content)),
|
||||
open=True,
|
||||
),
|
||||
)
|
||||
|
||||
def prepare_citation(self, answer) -> list[Document]:
|
||||
"""Prepare citation to show on the UI"""
|
||||
segments = []
|
||||
split_indices = [
|
||||
0,
|
||||
]
|
||||
start_indices = set()
|
||||
text = ""
|
||||
|
||||
if "citation" in answer.metadata and answer.metadata["citation"] is not None:
|
||||
context = answer.metadata["worker_log"]
|
||||
for fact_with_evidence in answer.metadata["citation"].answer:
|
||||
for quote in fact_with_evidence.substring_quote:
|
||||
matches = find_text(quote, context)
|
||||
for match in matches:
|
||||
split_indices.append(match[0])
|
||||
split_indices.append(match[1])
|
||||
start_indices.add(match[0])
|
||||
split_indices = sorted(list(set(split_indices)))
|
||||
spans = []
|
||||
prev = 0
|
||||
for index in split_indices:
|
||||
if index > prev:
|
||||
spans.append(context[prev:index])
|
||||
prev = index
|
||||
spans.append(context[split_indices[-1] :])
|
||||
|
||||
prev = 0
|
||||
for span, start_idx in list(zip(spans, split_indices)):
|
||||
if start_idx in start_indices:
|
||||
text += Render.highlight(span)
|
||||
else:
|
||||
text += span
|
||||
|
||||
else:
|
||||
text = answer.metadata["worker_log"]
|
||||
|
||||
# separate text by detect header: #Plan
|
||||
for line in text.splitlines():
|
||||
if line.startswith("#Plan"):
|
||||
# line starts with #Plan should be marked as a new segment
|
||||
new_segment = [line]
|
||||
segments.append(new_segment)
|
||||
elif line.startswith("#"):
|
||||
# stop markdown from rendering big headers
|
||||
line = "\\" + line
|
||||
segments[-1].append(line)
|
||||
else:
|
||||
segments[-1].append(line)
|
||||
|
||||
outputs = []
|
||||
for segment in segments:
|
||||
outputs.append(
|
||||
Document(
|
||||
channel="info",
|
||||
content=Render.collapsible(
|
||||
header=segment[0],
|
||||
content=Render.table("\n".join(segment[1:])),
|
||||
open=True,
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return outputs
|
||||
|
||||
async def ainvoke( # type: ignore
|
||||
self, message, conv_id: str, history: list, **kwargs # type: ignore
|
||||
) -> Document:
|
||||
answer = self.agent(message, use_citation=True)
|
||||
self.report_output(Document(content=answer.text, channel="chat"))
|
||||
|
||||
refined_citations = self.prepare_citation(answer)
|
||||
for _ in refined_citations:
|
||||
self.report_output(_)
|
||||
|
||||
self.report_output(None)
|
||||
return answer
|
||||
|
||||
def stream( # type: ignore
|
||||
self, message, conv_id: str, history: list, **kwargs # type: ignore
|
||||
) -> Generator[Document, None, Document] | None:
|
||||
if self.use_rewrite:
|
||||
rewrite = self.rewrite_pipeline(question=message)
|
||||
message = rewrite.text
|
||||
yield Document(
|
||||
channel="info",
|
||||
content=f"Rewrote the message to: {rewrite.text}",
|
||||
)
|
||||
|
||||
output_stream = GeneratorWrapper(
|
||||
self.agent.stream(message, use_citation=self.enable_citation)
|
||||
)
|
||||
for item in output_stream:
|
||||
if item.intermediate_steps:
|
||||
for step in item.intermediate_steps:
|
||||
yield Document(
|
||||
channel="info",
|
||||
content=self.format_info_panel(step["worker_log"]),
|
||||
)
|
||||
if item.text:
|
||||
yield Document(channel="chat", content=item.text)
|
||||
|
||||
answer = output_stream.value
|
||||
yield Document(channel="info", content=None)
|
||||
refined_citations = self.prepare_citation(answer)
|
||||
for _ in refined_citations:
|
||||
yield _
|
||||
|
||||
return answer
|
||||
|
||||
@classmethod
|
||||
def get_pipeline(
|
||||
cls, settings: dict, states: dict, retrievers: list | None = None
|
||||
) -> BaseReasoning:
|
||||
_id = cls.get_info()["id"]
|
||||
prefix = f"reasoning.options.{_id}"
|
||||
pipeline = RewooAgentPipeline(retrievers=retrievers)
|
||||
|
||||
planner_llm_name = settings[f"{prefix}.planner_llm"]
|
||||
planner_llm = llms.get(planner_llm_name, llms.get_default())
|
||||
solver_llm_name = settings[f"{prefix}.solver_llm"]
|
||||
solver_llm = llms.get(solver_llm_name, llms.get_default())
|
||||
|
||||
pipeline.agent.planner_llm = planner_llm
|
||||
pipeline.agent.solver_llm = solver_llm
|
||||
|
||||
tools = []
|
||||
for tool_name in settings[f"{prefix}.tools"]:
|
||||
tool = TOOL_REGISTRY[tool_name]
|
||||
if tool_name == "SearchDoc":
|
||||
tool.retrievers = retrievers
|
||||
elif tool_name == "LLM":
|
||||
tool.llm = solver_llm
|
||||
tools.append(tool)
|
||||
pipeline.agent.plugins = tools
|
||||
pipeline.agent.output_lang = {"en": "English", "ja": "Japanese"}.get(
|
||||
settings["reasoning.lang"], "English"
|
||||
)
|
||||
pipeline.agent.prompt_template["Planner"] = PromptTemplate(
|
||||
settings[f"{prefix}.planner_prompt"]
|
||||
)
|
||||
pipeline.agent.prompt_template["Solver"] = PromptTemplate(
|
||||
settings[f"{prefix}.solver_prompt"]
|
||||
)
|
||||
|
||||
pipeline.enable_citation = settings[f"{prefix}.highlight_citation"]
|
||||
pipeline.use_rewrite = states.get("app", {}).get("regen", False)
|
||||
pipeline.rewrite_pipeline.llm = (
|
||||
planner_llm # TODO: separate llm for rewrite if needed
|
||||
)
|
||||
|
||||
return pipeline
|
||||
|
||||
@classmethod
|
||||
def get_user_settings(cls) -> dict:
|
||||
|
||||
llm = ""
|
||||
llm_choices = [("(default)", "")]
|
||||
try:
|
||||
llm_choices += [(_, _) for _ in llms.options().keys()]
|
||||
except Exception as e:
|
||||
logger.exception(f"Failed to get LLM options: {e}")
|
||||
|
||||
tool_choices = ["Wikipedia", "Google", "LLM", "SearchDoc"]
|
||||
|
||||
return {
|
||||
"planner_llm": {
|
||||
"name": "Language model for Planner",
|
||||
"value": llm,
|
||||
"component": "dropdown",
|
||||
"choices": llm_choices,
|
||||
"info": (
|
||||
"The language model to use for planning. "
|
||||
"This model will generate a plan based on the "
|
||||
"instruction to find the answer."
|
||||
),
|
||||
},
|
||||
"solver_llm": {
|
||||
"name": "Language model for Solver",
|
||||
"value": llm,
|
||||
"component": "dropdown",
|
||||
"choices": llm_choices,
|
||||
"info": (
|
||||
"The language model to use for solving. "
|
||||
"This model will generate the answer based on the "
|
||||
"plan generated by the planner and evidences found by the tools."
|
||||
),
|
||||
},
|
||||
"highlight_citation": {
|
||||
"name": "Highlight Citation",
|
||||
"value": False,
|
||||
"component": "checkbox",
|
||||
},
|
||||
"tools": {
|
||||
"name": "Tools for knowledge retrieval",
|
||||
"value": ["SearchDoc", "LLM"],
|
||||
"component": "checkboxgroup",
|
||||
"choices": tool_choices,
|
||||
},
|
||||
"planner_prompt": {
|
||||
"name": "Planner Prompt",
|
||||
"value": DEFAULT_PLANNER_PROMPT,
|
||||
},
|
||||
"solver_prompt": {
|
||||
"name": "Solver Prompt",
|
||||
"value": DEFAULT_SOLVER_PROMPT,
|
||||
},
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_info(cls) -> dict:
|
||||
return {
|
||||
"id": "ReWOO",
|
||||
"name": "ReWOO Agent",
|
||||
"description": (
|
||||
"Implementing ReWOO paradigm " "https://arxiv.org/pdf/2305.18323.pdf"
|
||||
),
|
||||
}
|
9
libs/ktem/ktem/utils/generator.py
Normal file
9
libs/ktem/ktem/utils/generator.py
Normal file
@@ -0,0 +1,9 @@
|
||||
class Generator:
|
||||
"""A generator that stores return value from another generator"""
|
||||
|
||||
def __init__(self, gen):
|
||||
self.gen = gen
|
||||
|
||||
def __iter__(self):
|
||||
self.value = yield from self.gen
|
||||
return self.value
|
Reference in New Issue
Block a user