Add new OCRReader with PDF+OCR text merging (#66)

This change speeds up OCR extraction by allowing bypassing OCR for texts that are irrelevant (not in table).

---------

Co-authored-by: Nguyen Trung Duc (john) <trungduc1992@gmail.com>
This commit is contained in:
Tuan Anh Nguyen Dang (Tadashi_Cin)
2023-11-13 17:43:02 +07:00
committed by GitHub
parent d79b3744cb
commit 4704e2c11a
10 changed files with 523 additions and 126 deletions

View File

@@ -7,78 +7,81 @@ from llama_index.readers.base import BaseReader
from kotaemon.documents import Document
from .utils.table import (
extract_tables_from_csv_string,
get_table_from_ocr,
strip_special_chars_markdown,
)
from .utils.pdf_ocr import parse_ocr_output, read_pdf_unstructured
from .utils.table import strip_special_chars_markdown
DEFAULT_OCR_ENDPOINT = "http://127.0.0.1:8000/v2/ai/infer/"
class OCRReader(BaseReader):
def __init__(self, endpoint: str = DEFAULT_OCR_ENDPOINT):
def __init__(self, endpoint: str = DEFAULT_OCR_ENDPOINT, use_ocr=True):
"""Init the OCR reader with OCR endpoint (FullOCR pipeline)
Args:
endpoint: URL to FullOCR endpoint. Defaults to OCR_ENDPOINT.
use_ocr: whether to use OCR to read text
(e.g: from images, tables) in the PDF
"""
super().__init__()
self.ocr_endpoint = endpoint
self.use_ocr = use_ocr
def load_data(
self,
file: Path,
file_path: Path,
**kwargs,
) -> List[Document]:
"""Load data using OCR reader
Args:
file_path (Path): Path to PDF file
debug_path (Path): Path to store debug image output
artifact_path (Path): Path to OCR endpoints artifacts directory
Returns:
List[Document]: list of documents extracted from the PDF file
"""
# create input params for the requests
content = open(file, "rb")
content = open(file_path, "rb")
files = {"input": content}
data = {"job_id": uuid4()}
data = {"job_id": uuid4(), "table_only": not self.use_ocr}
# init list of output documents
documents = []
all_table_csv_list = []
all_non_table_texts = []
debug_path = kwargs.pop("debug_path", None)
artifact_path = kwargs.pop("artifact_path", None)
# call the API from FullOCR endpoint
if "response_content" in kwargs:
# overriding response content if specified
results = kwargs["response_content"]
ocr_results = kwargs["response_content"]
else:
# call original API
resp = requests.post(url=self.ocr_endpoint, files=files, data=data)
results = resp.json()["result"]
ocr_results = resp.json()["result"]
for _id, each in enumerate(results):
csv_content = each["csv_string"]
table = each["json"]["table"]
ocr = each["json"]["ocr"]
# using helper function to extract list of table texts from FullOCR output
table_texts = get_table_from_ocr(ocr, table)
# extract the formatted CSV table from specified text
csv_list, non_table_text = extract_tables_from_csv_string(
csv_content, table_texts
)
all_table_csv_list.extend([(csv, _id) for csv in csv_list])
all_non_table_texts.append((non_table_text, _id))
# read PDF through normal reader (unstructured)
pdf_page_items = read_pdf_unstructured(file_path)
# merge PDF text output with OCR output
tables, texts = parse_ocr_output(
ocr_results,
pdf_page_items,
debug_path=debug_path,
artifact_path=artifact_path,
)
# create output Document with metadata from table
documents = [
Document(
text=strip_special_chars_markdown(csv),
text=strip_special_chars_markdown(table_text),
metadata={
"table_origin": csv,
"table_origin": table_text,
"type": "table",
"page_label": page_id + 1,
"source": file.name,
"source": file_path.name,
},
metadata_template="",
metadata_seperator="",
)
for csv, page_id in all_table_csv_list
for page_id, table_text in tables
]
# create Document from non-table text
documents.extend(
@@ -87,10 +90,10 @@ class OCRReader(BaseReader):
text=non_table_text,
metadata={
"page_label": page_id + 1,
"source": file.name,
"source": file_path.name,
},
)
for non_table_text, page_id in all_non_table_texts
for page_id, non_table_text in texts
]
)