Add Huggingface embeddings and Cohere embeddings (#63)

* Add huggingface embeddings and cohere embeddings
* Update openai interface and the mock for newer OpenAI SDK

---------

Co-authored-by: trducng <trungduc1992@gmail.com>
This commit is contained in:
ian_Cin
2023-11-10 09:38:30 +07:00
committed by GitHub
parent 9035e25666
commit 6095526dc7
13 changed files with 249 additions and 138 deletions

View File

@@ -2,6 +2,8 @@ import json
from pathlib import Path
from unittest.mock import patch
from kotaemon.embeddings.cohere import CohereEmbdeddings
from kotaemon.embeddings.huggingface import HuggingFaceEmbeddings
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
@@ -12,7 +14,7 @@ with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
@patch(
"openai.api_resources.embedding.Embedding.create",
"openai.resources.embeddings.Embeddings.create",
side_effect=lambda *args, **kwargs: openai_embedding,
)
def test_azureopenai_embeddings_raw(openai_embedding_call):
@@ -29,7 +31,7 @@ def test_azureopenai_embeddings_raw(openai_embedding_call):
@patch(
"openai.api_resources.embedding.Embedding.create",
"openai.resources.embeddings.Embeddings.create",
side_effect=lambda *args, **kwargs: openai_embedding_batch,
)
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
@@ -44,3 +46,42 @@ def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
assert isinstance(output[0], list)
assert isinstance(output[0][0], float)
openai_embedding_call.assert_called()
@patch(
"sentence_transformers.SentenceTransformer",
side_effect=lambda *args, **kwargs: None,
)
@patch(
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_query",
side_effect=lambda *args, **kwargs: [1.0, 2.1, 3.2],
)
def test_huggingface_embddings(
langchain_huggingface_embedding_call, sentence_transformers_init
):
model = HuggingFaceEmbeddings(
model_name="intfloat/multilingual-e5-large",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": False},
)
output = model("Hello World")
assert isinstance(output, list)
assert isinstance(output[0], float)
sentence_transformers_init.assert_called()
langchain_huggingface_embedding_call.assert_called()
@patch(
"langchain.embeddings.cohere.CohereEmbeddings.embed_query",
side_effect=lambda *args, **kwargs: [1.0, 2.1, 3.2],
)
def test_cohere_embddings(langchain_cohere_embedding_call):
model = CohereEmbdeddings(
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
)
output = model("Hello World")
assert isinstance(output, list)
assert isinstance(output[0], float)
langchain_cohere_embedding_call.assert_called()