feat: allow to use customized GraphRAG settings.yaml (#387) bump:patch
* allow to use customized GraphRAG settings.yaml * adjust import style * fix typo * Added GraphRAG original documentation reference. * feat: allow to use customized GraphRAG settings.yaml (#387) --------- Co-authored-by: Chen, Ron Gang <git@git.com>
This commit is contained in:
parent
f0f3b4b23e
commit
8188760f32
|
@ -25,6 +25,9 @@ GRAPHRAG_API_KEY=<YOUR_OPENAI_KEY>
|
||||||
GRAPHRAG_LLM_MODEL=gpt-4o-mini
|
GRAPHRAG_LLM_MODEL=gpt-4o-mini
|
||||||
GRAPHRAG_EMBEDDING_MODEL=text-embedding-3-small
|
GRAPHRAG_EMBEDDING_MODEL=text-embedding-3-small
|
||||||
|
|
||||||
|
# set to true if you want to use customized GraphRAG config file
|
||||||
|
USE_CUSTOMIZED_GRAPHRAG_SETTING=false
|
||||||
|
|
||||||
# settings for Azure DI
|
# settings for Azure DI
|
||||||
AZURE_DI_ENDPOINT=
|
AZURE_DI_ENDPOINT=
|
||||||
AZURE_DI_CREDENTIAL=
|
AZURE_DI_CREDENTIAL=
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import os
|
import os
|
||||||
|
import shutil
|
||||||
import subprocess
|
import subprocess
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import rmtree
|
from shutil import rmtree
|
||||||
|
@ -7,6 +8,8 @@ from uuid import uuid4
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import tiktoken
|
import tiktoken
|
||||||
|
import yaml
|
||||||
|
from decouple import config
|
||||||
from ktem.db.models import engine
|
from ktem.db.models import engine
|
||||||
from sqlalchemy.orm import Session
|
from sqlalchemy.orm import Session
|
||||||
from theflow.settings import settings
|
from theflow.settings import settings
|
||||||
|
@ -116,6 +119,16 @@ class GraphRAGIndexingPipeline(IndexDocumentPipeline):
|
||||||
print(result.stdout)
|
print(result.stdout)
|
||||||
command = command[:-1]
|
command = command[:-1]
|
||||||
|
|
||||||
|
# copy customized GraphRAG config file if it exists
|
||||||
|
if config("USE_CUSTOMIZED_GRAPHRAG_SETTING", default="value").lower() == "true":
|
||||||
|
setting_file_path = os.path.join(os.getcwd(), "settings.yaml.example")
|
||||||
|
destination_file_path = os.path.join(input_path, "settings.yaml")
|
||||||
|
try:
|
||||||
|
shutil.copy(setting_file_path, destination_file_path)
|
||||||
|
except shutil.Error:
|
||||||
|
# Handle the error if the file copy fails
|
||||||
|
print("failed to copy customized GraphRAG config file. ")
|
||||||
|
|
||||||
# Run the command and stream stdout
|
# Run the command and stream stdout
|
||||||
with subprocess.Popen(command, stdout=subprocess.PIPE, text=True) as process:
|
with subprocess.Popen(command, stdout=subprocess.PIPE, text=True) as process:
|
||||||
if process.stdout:
|
if process.stdout:
|
||||||
|
@ -221,12 +234,28 @@ class GraphRAGRetrieverPipeline(BaseFileIndexRetriever):
|
||||||
text_unit_df = pd.read_parquet(f"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet")
|
text_unit_df = pd.read_parquet(f"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet")
|
||||||
text_units = read_indexer_text_units(text_unit_df)
|
text_units = read_indexer_text_units(text_unit_df)
|
||||||
|
|
||||||
|
# initialize default settings
|
||||||
embedding_model = os.getenv(
|
embedding_model = os.getenv(
|
||||||
"GRAPHRAG_EMBEDDING_MODEL", "text-embedding-3-small"
|
"GRAPHRAG_EMBEDDING_MODEL", "text-embedding-3-small"
|
||||||
)
|
)
|
||||||
|
embedding_api_key = os.getenv("GRAPHRAG_API_KEY")
|
||||||
|
embedding_api_base = None
|
||||||
|
|
||||||
|
# use customized GraphRAG settings if the flag is set
|
||||||
|
if config("USE_CUSTOMIZED_GRAPHRAG_SETTING", default="value").lower() == "true":
|
||||||
|
settings_yaml_path = Path(root_path) / "settings.yaml"
|
||||||
|
with open(settings_yaml_path, "r") as f:
|
||||||
|
settings = yaml.safe_load(f)
|
||||||
|
if settings["embeddings"]["llm"]["model"]:
|
||||||
|
embedding_model = settings["embeddings"]["llm"]["model"]
|
||||||
|
if settings["embeddings"]["llm"]["api_key"]:
|
||||||
|
embedding_api_key = settings["embeddings"]["llm"]["api_key"]
|
||||||
|
if settings["embeddings"]["llm"]["api_base"]:
|
||||||
|
embedding_api_base = settings["embeddings"]["llm"]["api_base"]
|
||||||
|
|
||||||
text_embedder = OpenAIEmbedding(
|
text_embedder = OpenAIEmbedding(
|
||||||
api_key=os.getenv("GRAPHRAG_API_KEY"),
|
api_key=embedding_api_key,
|
||||||
api_base=None,
|
api_base=embedding_api_base,
|
||||||
api_type=OpenaiApiType.OpenAI,
|
api_type=OpenaiApiType.OpenAI,
|
||||||
model=embedding_model,
|
model=embedding_model,
|
||||||
deployment_name=embedding_model,
|
deployment_name=embedding_model,
|
||||||
|
|
159
settings.yaml.example
Normal file
159
settings.yaml.example
Normal file
|
@ -0,0 +1,159 @@
|
||||||
|
# This is a sample GraphRAG settings.yaml file that allows users to run the GraphRAG index process with their customized parameters.
|
||||||
|
# The parameters in this file will only take effect when the USE_CUSTOMIZED_GRAPHRAG_SETTING is true in .env file.
|
||||||
|
# For a comprehensive understanding of GraphRAG parameters, please refer to: https://microsoft.github.io/graphrag/config/json_yaml/.
|
||||||
|
|
||||||
|
encoding_model: cl100k_base
|
||||||
|
skip_workflows: []
|
||||||
|
llm:
|
||||||
|
api_key: ${GRAPHRAG_API_KEY}
|
||||||
|
type: openai_chat # or azure_openai_chat
|
||||||
|
api_base: http://127.0.0.1:11434/v1
|
||||||
|
model: qwen2
|
||||||
|
model_supports_json: true # recommended if this is available for your model.
|
||||||
|
# max_tokens: 4000
|
||||||
|
request_timeout: 1800.0
|
||||||
|
# api_base: https://<instance>.openai.azure.com
|
||||||
|
# api_version: 2024-02-15-preview
|
||||||
|
# organization: <organization_id>
|
||||||
|
# deployment_name: <azure_model_deployment_name>
|
||||||
|
# tokens_per_minute: 150_000 # set a leaky bucket throttle
|
||||||
|
# requests_per_minute: 10_000 # set a leaky bucket throttle
|
||||||
|
# max_retries: 10
|
||||||
|
# max_retry_wait: 10.0
|
||||||
|
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
|
||||||
|
concurrent_requests: 5 # the number of parallel inflight requests that may be made
|
||||||
|
# temperature: 0 # temperature for sampling
|
||||||
|
# top_p: 1 # top-p sampling
|
||||||
|
# n: 1 # Number of completions to generate
|
||||||
|
|
||||||
|
parallelization:
|
||||||
|
stagger: 0.3
|
||||||
|
# num_threads: 50 # the number of threads to use for parallel processing
|
||||||
|
|
||||||
|
async_mode: threaded # or asyncio
|
||||||
|
|
||||||
|
embeddings:
|
||||||
|
## parallelization: override the global parallelization settings for embeddings
|
||||||
|
async_mode: threaded # or asyncio
|
||||||
|
# target: required # or all
|
||||||
|
# batch_size: 16 # the number of documents to send in a single request
|
||||||
|
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
|
||||||
|
llm:
|
||||||
|
api_base: http://localhost:11434/v1
|
||||||
|
api_key: ${GRAPHRAG_API_KEY}
|
||||||
|
model: nomic-embed-text
|
||||||
|
type: openai_embedding
|
||||||
|
# api_base: https://<instance>.openai.azure.com
|
||||||
|
# api_version: 2024-02-15-preview
|
||||||
|
# organization: <organization_id>
|
||||||
|
# deployment_name: <azure_model_deployment_name>
|
||||||
|
# tokens_per_minute: 150_000 # set a leaky bucket throttle
|
||||||
|
# requests_per_minute: 10_000 # set a leaky bucket throttle
|
||||||
|
# max_retries: 10
|
||||||
|
# max_retry_wait: 10.0
|
||||||
|
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
|
||||||
|
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
|
||||||
|
|
||||||
|
chunks:
|
||||||
|
size: 1200
|
||||||
|
overlap: 100
|
||||||
|
group_by_columns: [id] # by default, we don't allow chunks to cross documents
|
||||||
|
|
||||||
|
input:
|
||||||
|
type: file # or blob
|
||||||
|
file_type: text # or csv
|
||||||
|
base_dir: "input"
|
||||||
|
file_encoding: utf-8
|
||||||
|
file_pattern: ".*\\.txt$"
|
||||||
|
|
||||||
|
cache:
|
||||||
|
type: file # or blob
|
||||||
|
base_dir: "cache"
|
||||||
|
# connection_string: <azure_blob_storage_connection_string>
|
||||||
|
# container_name: <azure_blob_storage_container_name>
|
||||||
|
|
||||||
|
storage:
|
||||||
|
type: file # or blob
|
||||||
|
base_dir: "output"
|
||||||
|
# connection_string: <azure_blob_storage_connection_string>
|
||||||
|
# container_name: <azure_blob_storage_container_name>
|
||||||
|
|
||||||
|
reporting:
|
||||||
|
type: file # or console, blob
|
||||||
|
base_dir: "output"
|
||||||
|
# connection_string: <azure_blob_storage_connection_string>
|
||||||
|
# container_name: <azure_blob_storage_container_name>
|
||||||
|
|
||||||
|
entity_extraction:
|
||||||
|
## strategy: fully override the entity extraction strategy.
|
||||||
|
## type: one of graph_intelligence, graph_intelligence_json and nltk
|
||||||
|
## llm: override the global llm settings for this task
|
||||||
|
## parallelization: override the global parallelization settings for this task
|
||||||
|
## async_mode: override the global async_mode settings for this task
|
||||||
|
prompt: "prompts/entity_extraction.txt"
|
||||||
|
entity_types: [organization,person,geo,event]
|
||||||
|
max_gleanings: 1
|
||||||
|
|
||||||
|
summarize_descriptions:
|
||||||
|
## llm: override the global llm settings for this task
|
||||||
|
## parallelization: override the global parallelization settings for this task
|
||||||
|
## async_mode: override the global async_mode settings for this task
|
||||||
|
prompt: "prompts/summarize_descriptions.txt"
|
||||||
|
max_length: 500
|
||||||
|
|
||||||
|
claim_extraction:
|
||||||
|
## llm: override the global llm settings for this task
|
||||||
|
## parallelization: override the global parallelization settings for this task
|
||||||
|
## async_mode: override the global async_mode settings for this task
|
||||||
|
# enabled: true
|
||||||
|
prompt: "prompts/claim_extraction.txt"
|
||||||
|
description: "Any claims or facts that could be relevant to information discovery."
|
||||||
|
max_gleanings: 1
|
||||||
|
|
||||||
|
community_reports:
|
||||||
|
## llm: override the global llm settings for this task
|
||||||
|
## parallelization: override the global parallelization settings for this task
|
||||||
|
## async_mode: override the global async_mode settings for this task
|
||||||
|
prompt: "prompts/community_report.txt"
|
||||||
|
max_length: 2000
|
||||||
|
max_input_length: 8000
|
||||||
|
|
||||||
|
cluster_graph:
|
||||||
|
max_cluster_size: 10
|
||||||
|
|
||||||
|
embed_graph:
|
||||||
|
enabled: false # if true, will generate node2vec embeddings for nodes
|
||||||
|
# num_walks: 10
|
||||||
|
# walk_length: 40
|
||||||
|
# window_size: 2
|
||||||
|
# iterations: 3
|
||||||
|
# random_seed: 597832
|
||||||
|
|
||||||
|
umap:
|
||||||
|
enabled: false # if true, will generate UMAP embeddings for nodes
|
||||||
|
|
||||||
|
snapshots:
|
||||||
|
graphml: false
|
||||||
|
raw_entities: false
|
||||||
|
top_level_nodes: false
|
||||||
|
|
||||||
|
local_search:
|
||||||
|
# text_unit_prop: 0.5
|
||||||
|
# community_prop: 0.1
|
||||||
|
# conversation_history_max_turns: 5
|
||||||
|
# top_k_mapped_entities: 10
|
||||||
|
# top_k_relationships: 10
|
||||||
|
# llm_temperature: 0 # temperature for sampling
|
||||||
|
# llm_top_p: 1 # top-p sampling
|
||||||
|
# llm_n: 1 # Number of completions to generate
|
||||||
|
# max_tokens: 12000
|
||||||
|
|
||||||
|
global_search:
|
||||||
|
# llm_temperature: 0 # temperature for sampling
|
||||||
|
# llm_top_p: 1 # top-p sampling
|
||||||
|
# llm_n: 1 # Number of completions to generate
|
||||||
|
# max_tokens: 12000
|
||||||
|
# data_max_tokens: 12000
|
||||||
|
# map_max_tokens: 1000
|
||||||
|
# reduce_max_tokens: 2000
|
||||||
|
# concurrency: 32
|
Loading…
Reference in New Issue
Block a user