Upgrade the declarative pipeline for cleaner interface (#51)

This commit is contained in:
Nguyen Trung Duc (john)
2023-10-24 11:12:22 +07:00
committed by GitHub
parent aab982ddc4
commit 9035e25666
26 changed files with 365 additions and 169 deletions

View File

@@ -3,6 +3,7 @@ from pathlib import Path
from typing import List
from theflow import Node, Param
from theflow.utils.modules import ObjectInitDeclaration as _
from kotaemon.base import BaseComponent
from kotaemon.docstores import InMemoryDocumentStore
@@ -25,8 +26,6 @@ class QuestionAnsweringPipeline(BaseComponent):
storage_path: Path = Path("./storage")
retrieval_top_k: int = 3
openai_api_base: str = "https://bleh-dummy-2.openai.azure.com/"
openai_api_key: str = os.environ.get("OPENAI_API_KEY", "")
file_name_list: List[str]
"""List of filename, incombination with storage_path to
create persistent path of vectorstore"""
@@ -35,37 +34,27 @@ class QuestionAnsweringPipeline(BaseComponent):
"The context is: \n{context}\nAnswer: "
)
@Node.decorate(depends_on=["openai_api_base", "openai_api_key"])
def llm(self):
return AzureChatOpenAI(
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
openai_api_key=self.openai_api_key,
openai_api_version="2023-03-15-preview",
deployment_name="dummy-q2-gpt35",
temperature=0,
request_timeout=60,
)
llm: AzureChatOpenAI = AzureChatOpenAI.withx(
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
openai_api_version="2023-03-15-preview",
deployment_name="dummy-q2-gpt35",
temperature=0,
request_timeout=60,
)
@Param.decorate()
def vector_store(self):
return InMemoryVectorStore()
vector_store: Param[InMemoryVectorStore] = Param(_(InMemoryVectorStore))
doc_store: Param[InMemoryDocumentStore] = Param(_(InMemoryDocumentStore))
@Param.decorate()
def doc_store(self):
doc_store = InMemoryDocumentStore()
return doc_store
embedding: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings.withx(
model="text-embedding-ada-002",
deployment="dummy-q2-text-embedding",
openai_api_base="https://bleh-dummy-2.openai.azure.com/",
openai_api_key=os.environ.get("OPENAI_API_KEY", ""),
)
@Node.decorate(depends_on=["openai_api_base", "openai_api_key"])
def embedding(self):
return AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="dummy-q2-text-embedding",
openai_api_base=self.openai_api_base,
openai_api_key=self.openai_api_key,
)
@Node.decorate(depends_on=["doc_store", "vector_store", "embedding"])
def retrieving_pipeline(self):
@Node.default()
def retrieving_pipeline(self) -> RetrieveDocumentFromVectorStorePipeline:
retrieving_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=self.vector_store,
doc_store=self.doc_store,