Treat index id as auto-generated field (#27)
* Treat index id as auto-generated field * fix Can't create index: KeyError: 'embedding' #28 * udpate docs * Update requirement * Use lighter default local embedding model --------- Co-authored-by: ian <ian@cinnamon.is>
This commit is contained in:
parent
66905d39c4
commit
917fb0a082
|
@ -1,6 +1,8 @@
|
|||
# kotaemon
|
||||
|
||||
[Documentation](https://cinnamon.github.io/kotaemon/)
|
||||

|
||||
|
||||
[User Guide](https://cinnamon.github.io/kotaemon/) | [Developer Guide](https://cinnamon.github.io/kotaemon/development/)
|
||||
|
||||
[](https://www.python.org/downloads/release/python-31013/)
|
||||
[](https://github.com/psf/black)
|
||||
|
|
BIN
docs/images/chat-tab-demo.png
Normal file
BIN
docs/images/chat-tab-demo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 364 KiB |
|
@ -1,8 +1,9 @@
|
|||
# Getting Started with Kotaemon
|
||||
|
||||
This page is intended for end users who want to use the `kotaemon` tool for Question
|
||||
Answering on local documents. If you are a developer who wants contribute to the
|
||||
project, please visit the [development](development/index.md) page.
|
||||

|
||||
|
||||
This page is intended for **end users** who want to use the `kotaemon` tool for Question
|
||||
Answering on local documents. If you are a **developer** who wants contribute to the project, please visit the [development](development/index.md) page.
|
||||
|
||||
## Download
|
||||
|
||||
|
@ -18,8 +19,7 @@ Download and upzip the latest version of `kotaemon` by clicking this
|
|||
2. Enable All Applications and choose Terminal.
|
||||
3. NOTE: If you always want to open that file with Terminal, then check Always Open With.
|
||||
4. From now on, double click on your file and it should work.
|
||||
- Linux: `run_linux.sh`. If you are using Linux, you would know how to run a bash
|
||||
script, right ?
|
||||
- Linux: `run_linux.sh`. If you are using Linux, you would know how to run a bash script, right ?
|
||||
2. After the installation, the installer will ask to launch the ktem's UI, answer to continue.
|
||||
3. If launched, the application will be open automatically in your browser.
|
||||
|
||||
|
|
|
@ -119,10 +119,10 @@ if config("LOCAL_MODEL", default=""):
|
|||
}
|
||||
|
||||
if len(KH_EMBEDDINGS) < 1:
|
||||
KH_EMBEDDINGS["local-mxbai-large-v1"] = {
|
||||
KH_EMBEDDINGS["local-bge-base-en-v1.5"] = {
|
||||
"spec": {
|
||||
"__type__": "kotaemon.embeddings.FastEmbedEmbeddings",
|
||||
"model_name": "mixedbread-ai/mxbai-embed-large-v1",
|
||||
"model_name": "BAAI/bge-base-en-v1.5",
|
||||
},
|
||||
"default": True,
|
||||
}
|
||||
|
@ -164,7 +164,6 @@ SETTINGS_REASONING = {
|
|||
KH_INDEX_TYPES = ["ktem.index.file.FileIndex"]
|
||||
KH_INDICES = [
|
||||
{
|
||||
"id": 1,
|
||||
"name": "File",
|
||||
"config": {},
|
||||
"index_type": "ktem.index.file.FileIndex",
|
||||
|
|
|
@ -196,4 +196,4 @@ class EmbeddingManager:
|
|||
return {vendor.__qualname__: vendor for vendor in self._vendors}
|
||||
|
||||
|
||||
embeddings = EmbeddingManager()
|
||||
embedding_models_manager = EmbeddingManager()
|
||||
|
|
|
@ -5,7 +5,7 @@ import pandas as pd
|
|||
import yaml
|
||||
from ktem.app import BasePage
|
||||
|
||||
from .manager import embeddings
|
||||
from .manager import embedding_models_manager
|
||||
|
||||
|
||||
def format_description(cls):
|
||||
|
@ -118,12 +118,12 @@ class EmbeddingManagement(BasePage):
|
|||
outputs=[self.emb_list],
|
||||
)
|
||||
self._app.app.load(
|
||||
lambda: gr.update(choices=list(embeddings.vendors().keys())),
|
||||
lambda: gr.update(choices=list(embedding_models_manager.vendors().keys())),
|
||||
outputs=[self.emb_choices],
|
||||
)
|
||||
|
||||
def on_emb_vendor_change(self, vendor):
|
||||
vendor = embeddings.vendors()[vendor]
|
||||
vendor = embedding_models_manager.vendors()[vendor]
|
||||
|
||||
required: dict = {}
|
||||
desc = vendor.describe()
|
||||
|
@ -224,12 +224,12 @@ class EmbeddingManagement(BasePage):
|
|||
try:
|
||||
spec = yaml.safe_load(spec)
|
||||
spec["__type__"] = (
|
||||
embeddings.vendors()[choices].__module__
|
||||
embedding_models_manager.vendors()[choices].__module__
|
||||
+ "."
|
||||
+ embeddings.vendors()[choices].__qualname__
|
||||
+ embedding_models_manager.vendors()[choices].__qualname__
|
||||
)
|
||||
|
||||
embeddings.add(name, spec=spec, default=default)
|
||||
embedding_models_manager.add(name, spec=spec, default=default)
|
||||
gr.Info(f'Create Embedding model "{name}" successfully')
|
||||
except Exception as e:
|
||||
raise gr.Error(f"Failed to create Embedding model {name}: {e}")
|
||||
|
@ -237,7 +237,7 @@ class EmbeddingManagement(BasePage):
|
|||
def list_embeddings(self):
|
||||
"""List the Embedding models"""
|
||||
items = []
|
||||
for item in embeddings.info().values():
|
||||
for item in embedding_models_manager.info().values():
|
||||
record = {}
|
||||
record["name"] = item["name"]
|
||||
record["vendor"] = item["spec"].get("__type__", "-").split(".")[-1]
|
||||
|
@ -280,9 +280,9 @@ class EmbeddingManagement(BasePage):
|
|||
btn_delete_yes = gr.update(visible=False)
|
||||
btn_delete_no = gr.update(visible=False)
|
||||
|
||||
info = deepcopy(embeddings.info()[selected_emb_name])
|
||||
info = deepcopy(embedding_models_manager.info()[selected_emb_name])
|
||||
vendor_str = info["spec"].pop("__type__", "-").split(".")[-1]
|
||||
vendor = embeddings.vendors()[vendor_str]
|
||||
vendor = embedding_models_manager.vendors()[vendor_str]
|
||||
|
||||
edit_spec = yaml.dump(info["spec"])
|
||||
edit_spec_desc = format_description(vendor)
|
||||
|
@ -309,15 +309,19 @@ class EmbeddingManagement(BasePage):
|
|||
def save_emb(self, selected_emb_name, default, spec):
|
||||
try:
|
||||
spec = yaml.safe_load(spec)
|
||||
spec["__type__"] = embeddings.info()[selected_emb_name]["spec"]["__type__"]
|
||||
embeddings.update(selected_emb_name, spec=spec, default=default)
|
||||
spec["__type__"] = embedding_models_manager.info()[selected_emb_name][
|
||||
"spec"
|
||||
]["__type__"]
|
||||
embedding_models_manager.update(
|
||||
selected_emb_name, spec=spec, default=default
|
||||
)
|
||||
gr.Info(f'Save Embedding model "{selected_emb_name}" successfully')
|
||||
except Exception as e:
|
||||
gr.Error(f'Failed to save Embedding model "{selected_emb_name}": {e}')
|
||||
|
||||
def delete_emb(self, selected_emb_name):
|
||||
try:
|
||||
embeddings.delete(selected_emb_name)
|
||||
embedding_models_manager.delete(selected_emb_name)
|
||||
except Exception as e:
|
||||
gr.Error(f'Failed to delete Embedding model "{selected_emb_name}": {e}')
|
||||
return selected_emb_name
|
||||
|
|
|
@ -293,10 +293,10 @@ class FileIndex(BaseIndex):
|
|||
|
||||
@classmethod
|
||||
def get_admin_settings(cls):
|
||||
from ktem.embeddings.manager import embeddings
|
||||
from ktem.embeddings.manager import embedding_models_manager
|
||||
|
||||
embedding_default = embeddings.get_default_name()
|
||||
embedding_choices = list(embeddings.options().keys())
|
||||
embedding_default = embedding_models_manager.get_default_name()
|
||||
embedding_choices = list(embedding_models_manager.options().keys())
|
||||
|
||||
return {
|
||||
"embedding": {
|
||||
|
|
|
@ -12,7 +12,7 @@ from typing import Optional
|
|||
import gradio as gr
|
||||
from ktem.components import filestorage_path
|
||||
from ktem.db.models import engine
|
||||
from ktem.embeddings.manager import embeddings
|
||||
from ktem.embeddings.manager import embedding_models_manager
|
||||
from llama_index.vector_stores import (
|
||||
FilterCondition,
|
||||
FilterOperator,
|
||||
|
@ -225,7 +225,9 @@ class DocumentRetrievalPipeline(BaseFileIndexRetriever):
|
|||
if not user_settings["use_reranking"]:
|
||||
retriever.reranker = None # type: ignore
|
||||
|
||||
retriever.vector_retrieval.embedding = embeddings[index_settings["embedding"]]
|
||||
retriever.vector_retrieval.embedding = embedding_models_manager[
|
||||
index_settings.get("embedding", embedding_models_manager.get_default_name())
|
||||
]
|
||||
kwargs = {
|
||||
".top_k": int(user_settings["num_retrieval"]),
|
||||
".mmr": user_settings["mmr"],
|
||||
|
@ -436,7 +438,9 @@ class IndexDocumentPipeline(BaseFileIndexIndexing):
|
|||
if chunk_overlap:
|
||||
obj.file_ingestor.text_splitter.chunk_overlap = chunk_overlap
|
||||
|
||||
obj.indexing_vector_pipeline.embedding = embeddings[index_settings["embedding"]]
|
||||
obj.indexing_vector_pipeline.embedding = embedding_models_manager[
|
||||
index_settings.get("embedding", embedding_models_manager.get_default_name())
|
||||
]
|
||||
|
||||
return obj
|
||||
|
||||
|
|
|
@ -58,6 +58,10 @@ class IndexManager:
|
|||
index_cls = import_dotted_string(index_type, safe=False)
|
||||
index = index_cls(app=self._app, id=entry.id, name=name, config=config)
|
||||
index.on_create()
|
||||
|
||||
# update the entry
|
||||
entry.config = index.config
|
||||
sess.commit()
|
||||
except Exception as e:
|
||||
sess.delete(entry)
|
||||
sess.commit()
|
||||
|
@ -177,7 +181,7 @@ class IndexManager:
|
|||
self.load_index_types()
|
||||
|
||||
for index in settings.KH_INDICES:
|
||||
if not self.exists(index["id"]):
|
||||
if not self.exists(name=index["name"]):
|
||||
self.build_index(**index)
|
||||
|
||||
with Session(engine) as sess:
|
||||
|
|
|
@ -19,8 +19,10 @@ dependencies = [
|
|||
"python-decouple",
|
||||
"sqlalchemy",
|
||||
"sqlmodel",
|
||||
"fastembed",
|
||||
"tiktoken",
|
||||
"gradio>=4.26.0",
|
||||
"markdown",
|
||||
]
|
||||
readme = "README.md"
|
||||
license = { text = "MIT License" }
|
||||
|
|
Loading…
Reference in New Issue
Block a user