[AUR-385, AUR-388] Declare BaseComponent and decide LLM call interface (#2)
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873 - Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`: ```python from kotaemon.llms.chats.openai import AzureChatOpenAI model = AzureChatOpenAI( openai_api_base="https://test.openai.azure.com/", openai_api_key="some-key", openai_api_version="2023-03-15-preview", deployment_name="gpt35turbo", temperature=0, request_timeout=60, ) output = model("hello world") ``` For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow: - Completion LLM component: ```python class CompletionLLM: def run_raw(self, text: str) -> LLMInterface: # Run text completion: str in -> LLMInterface out def run_batch_raw(self, text: list[str]) -> list[LLMInterface]: # Run text completion in batch: list[str] in -> list[LLMInterface] out # run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case ``` - Chat LLM component: ```python class ChatLLM: def run_raw(self, text: str) -> LLMInterface: # Run chat completion (no chat history): str in -> LLMInterface out def run_batch_raw(self, text: list[str]) -> list[LLMInterface]: # Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out def run_document(self, text: list[BaseMessage]) -> LLMInterface: # Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]: # Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out ``` - The LLMInterface is as follow: ```python @dataclass class LLMInterface: text: list[str] completion_tokens: int = -1 total_tokens: int = -1 prompt_tokens: int = -1 logits: list[list[float]] = field(default_factory=list) ```
This commit is contained in:
parent
e9d1d5c118
commit
c3c25db48c
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -448,4 +448,6 @@ $RECYCLE.BIN/
|
|||
# Windows shortcuts
|
||||
*.lnk
|
||||
|
||||
.theflow/
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/python,linux,macos,windows,vim,emacs,visualstudiocode,pycharm
|
||||
|
|
30
README.md
30
README.md
|
@ -1,3 +1,31 @@
|
|||
Modules:
|
||||
# kotaemon
|
||||
|
||||
Quick and easy AI components to build Kotaemon - applicable in client
|
||||
project.
|
||||
|
||||
## Install
|
||||
|
||||
```shell
|
||||
pip install kotaemon@git+ssh://git@github.com/Cinnamon/kotaemon.git
|
||||
```
|
||||
|
||||
## Contribute
|
||||
|
||||
### Setup
|
||||
|
||||
```shell
|
||||
# Create conda environment (suggest 3.10)
|
||||
conda create -n kotaemon python=3.10
|
||||
conda activate kotaemon
|
||||
|
||||
# Install all
|
||||
pip install -e ".[dev]"
|
||||
|
||||
# Test
|
||||
pytest tests
|
||||
```
|
||||
|
||||
### Code base structure
|
||||
|
||||
- documents: define document
|
||||
- loaders
|
||||
|
|
|
@ -22,4 +22,4 @@ try:
|
|||
except ImportError:
|
||||
pass
|
||||
|
||||
__version__ = "0.0.1"
|
||||
__version__ = "0.0.2"
|
||||
|
|
56
knowledgehub/components.py
Normal file
56
knowledgehub/components.py
Normal file
|
@ -0,0 +1,56 @@
|
|||
from abc import abstractmethod
|
||||
|
||||
from theflow.base import Composable
|
||||
|
||||
|
||||
class BaseComponent(Composable):
|
||||
"""Base class for component
|
||||
|
||||
A component is a class that can be used to compose a pipeline. To use the
|
||||
component, you should implement the following methods:
|
||||
- run_raw: run on raw input
|
||||
- run_batch_raw: run on batch of raw input
|
||||
- run_document: run on document
|
||||
- run_batch_document: run on batch of documents
|
||||
- is_document: check if input is document
|
||||
- is_batch: check if input is batch
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def run_raw(self, *args, **kwargs):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_batch_raw(self, *args, **kwargs):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_document(self, *args, **kwargs):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_batch_document(self, *args, **kwargs):
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def is_document(self, *args, **kwargs) -> bool:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def is_batch(self, *args, **kwargs) -> bool:
|
||||
...
|
||||
|
||||
def run(self, *args, **kwargs):
|
||||
"""Run the component."""
|
||||
|
||||
is_document = self.is_document(*args, **kwargs)
|
||||
is_batch = self.is_batch(*args, **kwargs)
|
||||
|
||||
if is_document and is_batch:
|
||||
return self.run_batch_document(*args, **kwargs)
|
||||
elif is_document and not is_batch:
|
||||
return self.run_document(*args, **kwargs)
|
||||
elif not is_document and is_batch:
|
||||
return self.run_batch_raw(*args, **kwargs)
|
||||
else:
|
||||
return self.run_raw(*args, **kwargs)
|
0
knowledgehub/llms/__init__.py
Normal file
0
knowledgehub/llms/__init__.py
Normal file
24
knowledgehub/llms/base.py
Normal file
24
knowledgehub/llms/base.py
Normal file
|
@ -0,0 +1,24 @@
|
|||
from dataclasses import dataclass, field
|
||||
|
||||
from ..components import BaseComponent
|
||||
|
||||
|
||||
@dataclass
|
||||
class LLMInterface:
|
||||
text: list[str]
|
||||
completion_tokens: int = -1
|
||||
total_tokens: int = -1
|
||||
prompt_tokens: int = -1
|
||||
logits: list[list[float]] = field(default_factory=list)
|
||||
|
||||
|
||||
class PromptTemplate(BaseComponent):
|
||||
pass
|
||||
|
||||
|
||||
class Extract(BaseComponent):
|
||||
pass
|
||||
|
||||
|
||||
class PromptNode(BaseComponent):
|
||||
pass
|
0
knowledgehub/llms/chats/__init__.py
Normal file
0
knowledgehub/llms/chats/__init__.py
Normal file
85
knowledgehub/llms/chats/base.py
Normal file
85
knowledgehub/llms/chats/base.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
from typing import Type, TypeVar
|
||||
|
||||
from theflow.base import Param
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
from langchain.schema.messages import (
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
)
|
||||
|
||||
from ...components import BaseComponent
|
||||
from ..base import LLMInterface
|
||||
|
||||
|
||||
Message = TypeVar("Message", bound=BaseMessage)
|
||||
|
||||
|
||||
class ChatLLM(BaseComponent):
|
||||
...
|
||||
|
||||
|
||||
class LangchainChatLLM(ChatLLM):
|
||||
_lc_class: Type[BaseLanguageModel]
|
||||
|
||||
def __init__(self, **params):
|
||||
if self._lc_class is None:
|
||||
raise AttributeError(
|
||||
"Should set _lc_class attribute to the LLM class from Langchain "
|
||||
"if using LLM from Langchain"
|
||||
)
|
||||
|
||||
self._kwargs: dict = {}
|
||||
for param in list(params.keys()):
|
||||
if param in self._lc_class.__fields__:
|
||||
self._kwargs[param] = params.pop(param)
|
||||
super().__init__(**params)
|
||||
|
||||
@Param.decorate()
|
||||
def agent(self):
|
||||
return self._lc_class(**self._kwargs)
|
||||
|
||||
def run_raw(self, text: str) -> LLMInterface:
|
||||
message = HumanMessage(content=text)
|
||||
return self.run_document([message])
|
||||
|
||||
def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
|
||||
inputs = [[HumanMessage(content=each)] for each in text]
|
||||
return self.run_batch_document(inputs)
|
||||
|
||||
def run_document(self, text: list[Message]) -> LLMInterface:
|
||||
pred = self.agent.generate([text])
|
||||
return LLMInterface(
|
||||
text=[each.text for each in pred.generations[0]],
|
||||
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
|
||||
total_tokens=pred.llm_output["token_usage"]["total_tokens"],
|
||||
prompt_tokens=pred.llm_output["token_usage"]["prompt_tokens"],
|
||||
logits=[],
|
||||
)
|
||||
|
||||
def run_batch_document(self, text: list[list[Message]]) -> list[LLMInterface]:
|
||||
outputs = []
|
||||
for each_text in text:
|
||||
outputs.append(self.run_document(each_text))
|
||||
return outputs
|
||||
|
||||
def is_document(self, text) -> bool:
|
||||
if isinstance(text, str):
|
||||
return False
|
||||
elif isinstance(text, list) and isinstance(text[0], str):
|
||||
return False
|
||||
return True
|
||||
|
||||
def is_batch(self, text) -> bool:
|
||||
if isinstance(text, str):
|
||||
return False
|
||||
elif isinstance(text, list):
|
||||
if isinstance(text[0], BaseMessage):
|
||||
return False
|
||||
return True
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name in self._lc_class.__fields__:
|
||||
setattr(self.agent, name, value)
|
||||
else:
|
||||
super().__setattr__(name, value)
|
7
knowledgehub/llms/chats/openai.py
Normal file
7
knowledgehub/llms/chats/openai.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
from langchain.chat_models import AzureChatOpenAI as AzureChatOpenAILC
|
||||
|
||||
from .base import LangchainChatLLM
|
||||
|
||||
|
||||
class AzureChatOpenAI(LangchainChatLLM):
|
||||
_lc_class = AzureChatOpenAILC
|
0
knowledgehub/llms/completions/__init__.py
Normal file
0
knowledgehub/llms/completions/__init__.py
Normal file
70
knowledgehub/llms/completions/base.py
Normal file
70
knowledgehub/llms/completions/base.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
from typing import Type
|
||||
|
||||
from theflow.base import Param
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
|
||||
from ...components import BaseComponent
|
||||
from ..base import LLMInterface
|
||||
|
||||
|
||||
class LLM(BaseComponent):
|
||||
pass
|
||||
|
||||
|
||||
class LangchainLLM(LLM):
|
||||
_lc_class: Type[BaseLanguageModel]
|
||||
|
||||
def __init__(self, **params):
|
||||
if self._lc_class is None:
|
||||
raise AttributeError(
|
||||
"Should set _lc_class attribute to the LLM class from Langchain "
|
||||
"if using LLM from Langchain"
|
||||
)
|
||||
|
||||
self._kwargs: dict = {}
|
||||
for param in list(params.keys()):
|
||||
if param in self._lc_class.__fields__:
|
||||
self._kwargs[param] = params.pop(param)
|
||||
super().__init__(**params)
|
||||
|
||||
@Param.decorate()
|
||||
def agent(self):
|
||||
return self._lc_class(**self._kwargs)
|
||||
|
||||
def run_raw(self, text: str) -> LLMInterface:
|
||||
pred = self.agent.generate([text])
|
||||
return LLMInterface(
|
||||
text=[each.text for each in pred.generations[0]],
|
||||
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
|
||||
total_tokens=pred.llm_output["token_usage"]["total_tokens"],
|
||||
prompt_tokens=pred.llm_output["token_usage"]["prompt_tokens"],
|
||||
logits=[],
|
||||
)
|
||||
|
||||
def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
|
||||
outputs = []
|
||||
for each_text in text:
|
||||
outputs.append(self.run_raw(each_text))
|
||||
return outputs
|
||||
|
||||
def run_document(self, text: str) -> LLMInterface:
|
||||
return self.run_raw(text)
|
||||
|
||||
def run_batch_document(self, text: list[str]) -> list[LLMInterface]:
|
||||
return self.run_batch_raw(text)
|
||||
|
||||
def is_document(self, text) -> bool:
|
||||
return False
|
||||
|
||||
def is_batch(self, text) -> bool:
|
||||
return False if isinstance(text, str) else True
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name in self._lc_class.__fields__:
|
||||
setattr(self.agent, name, value)
|
||||
else:
|
||||
super().__setattr__(name, value)
|
||||
|
||||
|
||||
class LLMChat(BaseComponent):
|
||||
pass
|
13
knowledgehub/llms/completions/openai.py
Normal file
13
knowledgehub/llms/completions/openai.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
import langchain.llms as langchain_llms
|
||||
|
||||
from .base import LangchainLLM
|
||||
|
||||
|
||||
class OpenAI(LangchainLLM):
|
||||
"""Wrapper around Langchain's OpenAI class"""
|
||||
_lc_class = langchain_llms.OpenAI
|
||||
|
||||
|
||||
class AzureOpenAI(LangchainLLM):
|
||||
"""Wrapper around Langchain's AzureOpenAI class"""
|
||||
_lc_class = langchain_llms.AzureOpenAI
|
10
setup.py
10
setup.py
|
@ -28,17 +28,23 @@ setuptools.setup(
|
|||
url="https://github.com/Cinnamon/kotaemon/",
|
||||
packages=setuptools.find_packages(exclude=("tests", "tests.*")),
|
||||
install_requires=[
|
||||
"farm-haystack"
|
||||
"farm-haystack==1.19.0",
|
||||
"langchain",
|
||||
"theflow",
|
||||
],
|
||||
extras_require={
|
||||
"dev": [
|
||||
"ipython",
|
||||
"pytest",
|
||||
"pre-commit",
|
||||
"black",
|
||||
"flake8",
|
||||
"sphinx",
|
||||
"coverage",
|
||||
]
|
||||
|
||||
# optional dependency needed for test
|
||||
"openai"
|
||||
],
|
||||
},
|
||||
entry_points={"console_scripts": ["kh=kotaemon.cli:main"]},
|
||||
python_requires=">=3",
|
||||
|
|
78
tests/test_llms_chat_models.py
Normal file
78
tests/test_llms_chat_models.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from unittest.mock import patch
|
||||
|
||||
from langchain.chat_models import AzureChatOpenAI as AzureChatOpenAILC
|
||||
from langchain.schema.messages import (
|
||||
SystemMessage,
|
||||
HumanMessage,
|
||||
AIMessage,
|
||||
)
|
||||
|
||||
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||
from kotaemon.llms.base import LLMInterface
|
||||
|
||||
|
||||
_openai_chat_completion_response = {
|
||||
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
||||
"object": "chat.completion",
|
||||
"created": 1692338378,
|
||||
"model": "gpt-35-turbo",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "Hello! How can I assist you today?",
|
||||
},
|
||||
}
|
||||
],
|
||||
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
||||
}
|
||||
|
||||
|
||||
@patch(
|
||||
"openai.api_resources.chat_completion.ChatCompletion.create",
|
||||
side_effect=lambda *args, **kwargs: _openai_chat_completion_response,
|
||||
)
|
||||
def test_azureopenai_model(openai_completion):
|
||||
model = AzureChatOpenAI(
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
openai_api_version="2023-03-15-preview",
|
||||
deployment_name="gpt35turbo",
|
||||
temperature=0,
|
||||
request_timeout=60,
|
||||
)
|
||||
assert isinstance(
|
||||
model.agent, AzureChatOpenAILC
|
||||
), "Agent not wrapped in Langchain's AzureChatOpenAI"
|
||||
|
||||
# test for str input - stream mode
|
||||
output = model("hello world")
|
||||
assert isinstance(output, LLMInterface), "Output for single text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[str] input - batch mode
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch string is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[message] input - stream mode
|
||||
messages = [
|
||||
SystemMessage(content="You are a philosohper"),
|
||||
HumanMessage(content="What is the meaning of life"),
|
||||
AIMessage(content="42"),
|
||||
HumanMessage(content="What is the meaning of 42"),
|
||||
]
|
||||
|
||||
output = model(messages)
|
||||
assert isinstance(output, LLMInterface), "Output for single text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
# test for list[list[message]] input - batch mode
|
||||
output = model([messages])
|
||||
assert isinstance(output, list), "Output for batch string is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
70
tests/test_llms_completion_models.py
Normal file
70
tests/test_llms_completion_models.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
from unittest.mock import patch
|
||||
|
||||
from langchain.llms import AzureOpenAI as AzureOpenAILC, OpenAI as OpenAILC
|
||||
|
||||
from kotaemon.llms.completions.openai import AzureOpenAI, OpenAI
|
||||
from kotaemon.llms.base import LLMInterface
|
||||
|
||||
|
||||
_openai_completion_response = {
|
||||
"id": "cmpl-7qyNoIo6gRSCJR0hi8o3ZKBH4RkJ0",
|
||||
"object": "sample text_completion",
|
||||
"created": 1392751226,
|
||||
"model": "gpt-35-turbo",
|
||||
"choices": [
|
||||
{"text": "completion", "index": 0, "finish_reason": "length", "logprobs": None}
|
||||
],
|
||||
"usage": {"completion_tokens": 20, "prompt_tokens": 2, "total_tokens": 22},
|
||||
}
|
||||
|
||||
|
||||
@patch(
|
||||
"openai.api_resources.completion.Completion.create",
|
||||
side_effect=lambda *args, **kwargs: _openai_completion_response,
|
||||
)
|
||||
def test_azureopenai_model(openai_completion):
|
||||
model = AzureOpenAI(
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
openai_api_version="2023-03-15-preview",
|
||||
deployment_name="gpt35turbo",
|
||||
temperature=0,
|
||||
request_timeout=60,
|
||||
)
|
||||
assert isinstance(
|
||||
model.agent, AzureOpenAILC
|
||||
), "Agent not wrapped in Langchain's AzureOpenAI"
|
||||
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
output = model("hello world")
|
||||
assert isinstance(output, LLMInterface), "Output for single text is not LLMInterface"
|
||||
|
||||
|
||||
@patch(
|
||||
"openai.api_resources.completion.Completion.create",
|
||||
side_effect=lambda *args, **kwargs: _openai_completion_response,
|
||||
)
|
||||
def test_openai_model(openai_completion):
|
||||
model = OpenAI(
|
||||
openai_api_base="https://test.openai.azure.com/",
|
||||
openai_api_key="some-key",
|
||||
openai_api_version="2023-03-15-preview",
|
||||
deployment_name="gpt35turbo",
|
||||
temperature=0,
|
||||
request_timeout=60,
|
||||
)
|
||||
assert isinstance(
|
||||
model.agent, OpenAILC
|
||||
), "Agent is not wrapped in Langchain's OpenAI"
|
||||
|
||||
output = model(["hello world"])
|
||||
assert isinstance(output, list), "Output for batch is not a list"
|
||||
assert isinstance(output[0], LLMInterface), "Output for text is not LLMInterface"
|
||||
openai_completion.assert_called()
|
||||
|
||||
output = model("hello world")
|
||||
assert isinstance(output, LLMInterface), "Output for single text is not LLMInterface"
|
|
@ -1,3 +1,31 @@
|
|||
import os
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def clean_artifacts_for_telemetry():
|
||||
try:
|
||||
del sys.modules["kotaemon"]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
try:
|
||||
del sys.modules["haystack"]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
try:
|
||||
del sys.modules["haystack.telemetry"]
|
||||
except KeyError:
|
||||
pass
|
||||
|
||||
if "HAYSTACK_TELEMETRY_ENABLED" in os.environ:
|
||||
del os.environ["HAYSTACK_TELEMETRY_ENABLED"]
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("clean_artifacts_for_telemetry")
|
||||
def test_disable_telemetry_import_haystack_first():
|
||||
"""Test that telemetry is disabled when kotaemon lib is initiated after"""
|
||||
import os
|
||||
|
@ -10,6 +38,7 @@ def test_disable_telemetry_import_haystack_first():
|
|||
assert os.environ.get("HAYSTACK_TELEMETRY_ENABLED", "True") == "False"
|
||||
|
||||
|
||||
@pytest.mark.usefixtures("clean_artifacts_for_telemetry")
|
||||
def test_disable_telemetry_import_haystack_after_kotaemon():
|
||||
"""Test that telemetry is disabled when kotaemon lib is initiated before"""
|
||||
import os
|
||||
|
|
Loading…
Reference in New Issue
Block a user