[AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)

From pipeline > config > UI. Provide example project for promptui

- Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408.
- Config to UI: `kotaemon.contribs.promptui.build_from_yaml`
- Example project is located at `examples/promptui/`
This commit is contained in:
Nguyen Trung Duc (john)
2023-09-21 14:27:23 +07:00
committed by GitHub
parent c329c4c03f
commit c6dd01e820
18 changed files with 503 additions and 46 deletions

View File

@@ -1,8 +1,10 @@
from typing import List
import uuid
from typing import List, Optional
from theflow import Node, Param
from ..base import BaseComponent
from ..docstores import BaseDocumentStore
from ..documents.base import Document
from ..embeddings import BaseEmbeddings
from ..vectorstores import BaseVectorStore
@@ -18,21 +20,30 @@ class IndexVectorStoreFromDocumentPipeline(BaseComponent):
"""
vector_store: Param[BaseVectorStore] = Param()
doc_store: Optional[BaseDocumentStore] = None
embedding: Node[BaseEmbeddings] = Node()
# TODO: populate to document store as well when it's finished
# TODO: refer to llama_index's storage as well
def run_raw(self, text: str) -> None:
self.vector_store.add([self.embedding(text)])
document = Document(text=text, id_=str(uuid.uuid4()))
self.run_batch_document([document])
def run_batch_raw(self, text: List[str]) -> None:
self.vector_store.add(self.embedding(text))
documents = [Document(t, id_=str(uuid.uuid4())) for t in text]
self.run_batch_document(documents)
def run_document(self, text: Document) -> None:
self.vector_store.add([self.embedding(text)])
self.run_batch_document([text])
def run_batch_document(self, text: List[Document]) -> None:
self.vector_store.add(self.embedding(text))
embeddings = self.embedding(text)
self.vector_store.add(
embeddings=embeddings,
ids=[t.id_ for t in text],
)
if self.doc_store:
self.doc_store.add(text)
def is_document(self, text) -> bool:
if isinstance(text, Document):