Add Citation pipeline (#78)
* add rerankers in retrieving pipeline * update example MVP pipeline * add citation pipeline and function call interface * change return type of QA and AgentPipeline to Document
This commit is contained in:
committed by
GitHub
parent
f8b8d86d4e
commit
cc1e75b3c6
110
knowledgehub/pipelines/citation.py
Normal file
110
knowledgehub/pipelines/citation.py
Normal file
@@ -0,0 +1,110 @@
|
||||
from typing import Iterator, List, Union
|
||||
|
||||
from langchain.schema.messages import HumanMessage, SystemMessage
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from kotaemon.base import BaseComponent
|
||||
|
||||
from ..llms.chats.base import ChatLLM
|
||||
from ..llms.completions.base import LLM
|
||||
|
||||
BaseLLM = Union[ChatLLM, LLM]
|
||||
|
||||
|
||||
class FactWithEvidence(BaseModel):
|
||||
"""Class representing a single statement.
|
||||
|
||||
Each fact has a body and a list of sources.
|
||||
If there are multiple facts make sure to break them apart
|
||||
such that each one only uses a set of sources that are relevant to it.
|
||||
"""
|
||||
|
||||
fact: str = Field(..., description="Body of the sentence, as part of a response")
|
||||
substring_quote: List[str] = Field(
|
||||
...,
|
||||
description=(
|
||||
"Each source should be a direct quote from the context, "
|
||||
"as a substring of the original content"
|
||||
),
|
||||
)
|
||||
|
||||
def _get_span(self, quote: str, context: str, errs: int = 100) -> Iterator[str]:
|
||||
import regex
|
||||
|
||||
minor = quote
|
||||
major = context
|
||||
|
||||
errs_ = 0
|
||||
s = regex.search(f"({minor}){{e<={errs_}}}", major)
|
||||
while s is None and errs_ <= errs:
|
||||
errs_ += 1
|
||||
s = regex.search(f"({minor}){{e<={errs_}}}", major)
|
||||
|
||||
if s is not None:
|
||||
yield from s.spans()
|
||||
|
||||
def get_spans(self, context: str) -> Iterator[str]:
|
||||
for quote in self.substring_quote:
|
||||
yield from self._get_span(quote, context)
|
||||
|
||||
|
||||
class QuestionAnswer(BaseModel):
|
||||
"""A question and its answer as a list of facts each one should have a source.
|
||||
each sentence contains a body and a list of sources."""
|
||||
|
||||
question: str = Field(..., description="Question that was asked")
|
||||
answer: List[FactWithEvidence] = Field(
|
||||
...,
|
||||
description=(
|
||||
"Body of the answer, each fact should be "
|
||||
"its separate object with a body and a list of sources"
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class CitationPipeline(BaseComponent):
|
||||
"""Citation pipeline to extract cited evidences from source
|
||||
(based on input question)"""
|
||||
|
||||
llm: BaseLLM
|
||||
|
||||
def run(
|
||||
self,
|
||||
context: str,
|
||||
question: str,
|
||||
) -> QuestionAnswer:
|
||||
schema = QuestionAnswer.schema()
|
||||
function = {
|
||||
"name": schema["title"],
|
||||
"description": schema["description"],
|
||||
"parameters": schema,
|
||||
}
|
||||
llm_kwargs = {
|
||||
"functions": [function],
|
||||
"function_call": {"name": function["name"]},
|
||||
}
|
||||
messages = [
|
||||
SystemMessage(
|
||||
content=(
|
||||
"You are a world class algorithm to answer "
|
||||
"questions with correct and exact citations."
|
||||
)
|
||||
),
|
||||
HumanMessage(content="Answer question using the following context"),
|
||||
HumanMessage(content=context),
|
||||
HumanMessage(content=f"Question: {question}"),
|
||||
HumanMessage(
|
||||
content=(
|
||||
"Tips: Make sure to cite your sources, "
|
||||
"and use the exact words from the context."
|
||||
)
|
||||
),
|
||||
]
|
||||
|
||||
llm_output = self.llm(messages, **llm_kwargs)
|
||||
function_output = llm_output.messages[0].additional_kwargs["function_call"][
|
||||
"arguments"
|
||||
]
|
||||
output = QuestionAnswer.parse_raw(function_output)
|
||||
|
||||
return output
|
Reference in New Issue
Block a user