Simplify the BaseComponent
inteface (#64)
This change remove `BaseComponent`'s: - run_raw - run_batch_raw - run_document - run_batch_document - is_document - is_batch Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type. To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components. Tests are updated accordingly. Commit changes: * Add kwargs to vector store's query * Simplify the BaseComponent * Update tests * Remove support for Python 3.8 and 3.9 * Bump version 0.3.0 * Fix github PR caching still use old environment after bumping version --------- Co-authored-by: ian <ian@cinnamon.is>
This commit is contained in:
committed by
GitHub
parent
6095526dc7
commit
d79b3744cb
@@ -1,5 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import List, Type
|
||||
from typing import Type
|
||||
|
||||
from langchain.schema.embeddings import Embeddings as LCEmbeddings
|
||||
from theflow import Param
|
||||
@@ -10,33 +12,11 @@ from ..documents.base import Document
|
||||
|
||||
class BaseEmbeddings(BaseComponent):
|
||||
@abstractmethod
|
||||
def run_raw(self, text: str) -> List[float]:
|
||||
def run(
|
||||
self, text: str | list[str] | Document | list[Document]
|
||||
) -> list[list[float]]:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_document(self, text: Document) -> List[float]:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
|
||||
...
|
||||
|
||||
def is_document(self, text) -> bool:
|
||||
if isinstance(text, Document):
|
||||
return True
|
||||
elif isinstance(text, List) and isinstance(text[0], Document):
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_batch(self, text) -> bool:
|
||||
if isinstance(text, list):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class LangchainEmbeddings(BaseEmbeddings):
|
||||
_lc_class: Type[LCEmbeddings]
|
||||
@@ -64,14 +44,19 @@ class LangchainEmbeddings(BaseEmbeddings):
|
||||
def agent(self):
|
||||
return self._lc_class(**self._kwargs)
|
||||
|
||||
def run_raw(self, text: str) -> List[float]:
|
||||
return self.agent.embed_query(text) # type: ignore
|
||||
def run(self, text) -> list[list[float]]:
|
||||
input_: list[str] = []
|
||||
if not isinstance(text, list):
|
||||
text = [text]
|
||||
|
||||
def run_batch_raw(self, text: List[str]) -> List[List[float]]:
|
||||
return self.agent.embed_documents(text) # type: ignore
|
||||
for item in text:
|
||||
if isinstance(item, str):
|
||||
input_.append(item)
|
||||
elif isinstance(item, Document):
|
||||
input_.append(item.text)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid input type {type(item)}, should be str or Document"
|
||||
)
|
||||
|
||||
def run_document(self, text: Document) -> List[float]:
|
||||
return self.agent.embed_query(text.text) # type: ignore
|
||||
|
||||
def run_batch_document(self, text: List[Document]) -> List[List[float]]:
|
||||
return self.agent.embed_documents([each.text for each in text]) # type: ignore
|
||||
return self.agent.embed_documents(input_)
|
||||
|
Reference in New Issue
Block a user