Simplify the BaseComponent
inteface (#64)
This change remove `BaseComponent`'s: - run_raw - run_batch_raw - run_document - run_batch_document - is_document - is_batch Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type. To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components. Tests are updated accordingly. Commit changes: * Add kwargs to vector store's query * Simplify the BaseComponent * Update tests * Remove support for Python 3.8 and 3.9 * Bump version 0.3.0 * Fix github PR caching still use old environment after bumping version --------- Co-authored-by: ian <ian@cinnamon.is>
This commit is contained in:
committed by
GitHub
parent
6095526dc7
commit
d79b3744cb
@@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from theflow import Node, Param
|
||||
|
||||
@@ -26,44 +27,34 @@ class IndexVectorStoreFromDocumentPipeline(BaseComponent):
|
||||
vector_store: Param[BaseVectorStore] = Param()
|
||||
doc_store: Param[BaseDocumentStore] = Param()
|
||||
embedding: Node[BaseEmbeddings] = Node()
|
||||
|
||||
# TODO: refer to llama_index's storage as well
|
||||
|
||||
def run_raw(self, text: str) -> None:
|
||||
document = Document(text=text, id_=str(uuid.uuid4()))
|
||||
self.run_batch_document([document])
|
||||
def run(self, text: str | list[str] | Document | list[Document]) -> None:
|
||||
input_: list[Document] = []
|
||||
if not isinstance(text, list):
|
||||
text = [text]
|
||||
|
||||
def run_batch_raw(self, text: List[str]) -> None:
|
||||
documents = [Document(text=t, id_=str(uuid.uuid4())) for t in text]
|
||||
self.run_batch_document(documents)
|
||||
for item in text:
|
||||
if isinstance(item, str):
|
||||
input_.append(Document(text=item, id_=str(uuid.uuid4())))
|
||||
elif isinstance(item, Document):
|
||||
input_.append(item)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid input type {type(item)}, should be str or Document"
|
||||
)
|
||||
|
||||
def run_document(self, text: Document) -> None:
|
||||
self.run_batch_document([text])
|
||||
|
||||
def run_batch_document(self, text: List[Document]) -> None:
|
||||
embeddings = self.embedding(text)
|
||||
embeddings = self.embedding(input_)
|
||||
self.vector_store.add(
|
||||
embeddings=embeddings,
|
||||
ids=[t.id_ for t in text],
|
||||
ids=[t.id_ for t in input_],
|
||||
)
|
||||
if self.doc_store:
|
||||
self.doc_store.add(text)
|
||||
|
||||
def is_document(self, text) -> bool:
|
||||
if isinstance(text, Document):
|
||||
return True
|
||||
elif isinstance(text, List) and isinstance(text[0], Document):
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_batch(self, text) -> bool:
|
||||
if isinstance(text, list):
|
||||
return True
|
||||
return False
|
||||
self.doc_store.add(input_)
|
||||
|
||||
def save(
|
||||
self,
|
||||
path: Union[str, Path],
|
||||
path: str | Path,
|
||||
vectorstore_fname: str = VECTOR_STORE_FNAME,
|
||||
docstore_fname: str = DOC_STORE_FNAME,
|
||||
):
|
||||
@@ -80,7 +71,7 @@ class IndexVectorStoreFromDocumentPipeline(BaseComponent):
|
||||
|
||||
def load(
|
||||
self,
|
||||
path: Union[str, Path],
|
||||
path: str | Path,
|
||||
vectorstore_fname: str = VECTOR_STORE_FNAME,
|
||||
docstore_fname: str = DOC_STORE_FNAME,
|
||||
):
|
||||
|
Reference in New Issue
Block a user