Move LLM-related components into LLM module (#74)
* Move splitter into indexing module * Rename post_processing module to parsers * Migrate LLM-specific composite pipelines into llms module This change moves the `splitters` module into `indexing` module. The `indexing` module will be created soon, to house `indexing`-related components. This change renames `post_processing` module into `parsers` module. Post-processing is a generic term which provides very little information. In the future, we will add other extractors into the `parser` module, like Metadata extractor... This change migrates the composite elements into `llms` module. These elements heavily assume that the internal nodes are llm-specific. As a result, migrating these elements into `llms` module will make them more discoverable, and simplify code base structure.
This commit is contained in:
committed by
GitHub
parent
9945afdf6f
commit
f8b8d86d4e
185
knowledgehub/llms/branching.py
Normal file
185
knowledgehub/llms/branching.py
Normal file
@@ -0,0 +1,185 @@
|
||||
from typing import List, Optional
|
||||
|
||||
from theflow import Param
|
||||
|
||||
from ..base import BaseComponent, Document
|
||||
from .linear import GatedLinearPipeline
|
||||
|
||||
|
||||
class SimpleBranchingPipeline(BaseComponent):
|
||||
"""
|
||||
A simple branching pipeline for executing multiple branches.
|
||||
|
||||
Attributes:
|
||||
branches (List[BaseComponent]): The list of branches to be executed.
|
||||
|
||||
Example Usage:
|
||||
from kotaemon.llms import (
|
||||
AzureChatOpenAI,
|
||||
BasePromptComponent,
|
||||
GatedLinearPipeline,
|
||||
)
|
||||
from kotaemon.parsers import RegexExtractor
|
||||
|
||||
def identity(x):
|
||||
return x
|
||||
|
||||
pipeline = SimpleBranchingPipeline()
|
||||
llm = AzureChatOpenAI(
|
||||
openai_api_base="your openai api base",
|
||||
openai_api_key="your openai api key",
|
||||
openai_api_version="your openai api version",
|
||||
deployment_name="dummy-q2-gpt35",
|
||||
temperature=0,
|
||||
request_timeout=600,
|
||||
)
|
||||
|
||||
for i in range(3):
|
||||
pipeline.add_branch(
|
||||
GatedLinearPipeline(
|
||||
prompt=BasePromptComponent(template=f"what is {i} in Japanese ?"),
|
||||
condition=RegexExtractor(pattern=f"{i}"),
|
||||
llm=llm,
|
||||
post_processor=identity,
|
||||
)
|
||||
)
|
||||
print(pipeline(condition_text="1"))
|
||||
print(pipeline(condition_text="2"))
|
||||
print(pipeline(condition_text="12"))
|
||||
"""
|
||||
|
||||
branches: List[BaseComponent] = Param(default_callback=lambda *_: [])
|
||||
|
||||
def add_branch(self, component: BaseComponent):
|
||||
"""
|
||||
Add a new branch to the pipeline.
|
||||
|
||||
Args:
|
||||
component (BaseComponent): The branch component to be added.
|
||||
"""
|
||||
self.branches.append(component)
|
||||
|
||||
def run(self, **prompt_kwargs):
|
||||
"""
|
||||
Execute the pipeline by running each branch and return the outputs as a list.
|
||||
|
||||
Args:
|
||||
**prompt_kwargs: Keyword arguments for the branches.
|
||||
|
||||
Returns:
|
||||
List: The outputs of each branch as a list.
|
||||
"""
|
||||
output = []
|
||||
for i, branch in enumerate(self.branches):
|
||||
self._prepare_child(branch, name=f"branch-{i}")
|
||||
output.append(branch(**prompt_kwargs))
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class GatedBranchingPipeline(SimpleBranchingPipeline):
|
||||
"""
|
||||
A simple gated branching pipeline for executing multiple branches based on a
|
||||
condition.
|
||||
|
||||
This class extends the SimpleBranchingPipeline class and adds the ability to execute
|
||||
the branches until a branch returns a non-empty output based on a condition.
|
||||
|
||||
Attributes:
|
||||
branches (List[BaseComponent]): The list of branches to be executed.
|
||||
|
||||
Example Usage:
|
||||
from kotaemon.llms import (
|
||||
AzureChatOpenAI,
|
||||
BasePromptComponent,
|
||||
GatedLinearPipeline,
|
||||
)
|
||||
from kotaemon.parsers import RegexExtractor
|
||||
|
||||
def identity(x):
|
||||
return x
|
||||
|
||||
pipeline = GatedBranchingPipeline()
|
||||
llm = AzureChatOpenAI(
|
||||
openai_api_base="your openai api base",
|
||||
openai_api_key="your openai api key",
|
||||
openai_api_version="your openai api version",
|
||||
deployment_name="dummy-q2-gpt35",
|
||||
temperature=0,
|
||||
request_timeout=600,
|
||||
)
|
||||
|
||||
for i in range(3):
|
||||
pipeline.add_branch(
|
||||
GatedLinearPipeline(
|
||||
prompt=BasePromptComponent(template=f"what is {i} in Japanese ?"),
|
||||
condition=RegexExtractor(pattern=f"{i}"),
|
||||
llm=llm,
|
||||
post_processor=identity,
|
||||
)
|
||||
)
|
||||
print(pipeline(condition_text="1"))
|
||||
print(pipeline(condition_text="2"))
|
||||
"""
|
||||
|
||||
def run(self, *, condition_text: Optional[str] = None, **prompt_kwargs):
|
||||
"""
|
||||
Execute the pipeline by running each branch and return the output of the first
|
||||
branch that returns a non-empty output based on the provided condition.
|
||||
|
||||
Args:
|
||||
condition_text (str): The condition text to evaluate for each branch.
|
||||
Default to None.
|
||||
**prompt_kwargs: Keyword arguments for the branches.
|
||||
|
||||
Returns:
|
||||
Union[OutputType, None]: The output of the first branch that satisfies the
|
||||
condition, or None if no branch satisfies the condition.
|
||||
|
||||
Raise:
|
||||
ValueError: If condition_text is None
|
||||
"""
|
||||
if condition_text is None:
|
||||
raise ValueError("`condition_text` must be provided.")
|
||||
|
||||
for i, branch in enumerate(self.branches):
|
||||
self._prepare_child(branch, name=f"branch-{i}")
|
||||
output = branch(condition_text=condition_text, **prompt_kwargs)
|
||||
if output:
|
||||
return output
|
||||
|
||||
return Document(None)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import dotenv
|
||||
|
||||
from kotaemon.llms import BasePromptComponent
|
||||
from kotaemon.llms.chats.openai import AzureChatOpenAI
|
||||
from kotaemon.parsers import RegexExtractor
|
||||
|
||||
def identity(x):
|
||||
return x
|
||||
|
||||
secrets = dotenv.dotenv_values(".env")
|
||||
|
||||
pipeline = GatedBranchingPipeline()
|
||||
llm = AzureChatOpenAI(
|
||||
openai_api_base=secrets.get("OPENAI_API_BASE", ""),
|
||||
openai_api_key=secrets.get("OPENAI_API_KEY", ""),
|
||||
openai_api_version=secrets.get("OPENAI_API_VERSION", ""),
|
||||
deployment_name="dummy-q2-gpt35",
|
||||
temperature=0,
|
||||
request_timeout=600,
|
||||
)
|
||||
|
||||
for i in range(3):
|
||||
pipeline.add_branch(
|
||||
GatedLinearPipeline(
|
||||
prompt=BasePromptComponent(template=f"what is {i} in Japanese ?"),
|
||||
condition=RegexExtractor(pattern=f"{i}"),
|
||||
llm=llm,
|
||||
post_processor=identity,
|
||||
)
|
||||
)
|
||||
pipeline(condition_text="1")
|
Reference in New Issue
Block a user