kotaemon/tests/test_indexing_retrieval.py
Nguyen Trung Duc (john) 0a3fc4b228 Correct the use of abstractmethod (#80)
* Correct abstractmethod usage

* Update interface

* Specify minimal llama-index version [ignore cache]

* Update examples
2023-11-20 11:18:53 +07:00

68 lines
2.6 KiB
Python

import json
from pathlib import Path
from typing import cast
import pytest
from openai.resources.embeddings import Embeddings
from kotaemon.base import Document
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
from kotaemon.storages import ChromaVectorStore, InMemoryDocumentStore
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
openai_embedding = json.load(f)
@pytest.fixture(scope="function")
def mock_openai_embedding(monkeypatch):
monkeypatch.setattr(Embeddings, "create", lambda *args, **kwargs: openai_embedding)
def test_indexing(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
doc_store = InMemoryDocumentStore()
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding, doc_store=doc_store
)
pipeline.doc_store = cast(InMemoryDocumentStore, pipeline.doc_store)
pipeline.vector_store = cast(ChromaVectorStore, pipeline.vector_store)
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
assert len(pipeline.doc_store._store) == 0, "Expected empty doc store"
pipeline(text=Document(text="Hello world"))
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
assert len(pipeline.doc_store._store) == 1, "Expected 1 document"
def test_retrieving(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
doc_store = InMemoryDocumentStore()
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
index_pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding, doc_store=doc_store
)
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=db, doc_store=doc_store, embedding=embedding
)
index_pipeline(text=Document(text="Hello world"))
output = retrieval_pipeline(text="Hello world")
output1 = retrieval_pipeline(text="Hello world")
assert len(output) == 1, "Expect 1 results"
assert output == output1, "Expect identical results"