kotaemon/knowledgehub/llms/chats/base.py
ian_Cin d83c22aa4e [AUR-395, AUR-415] Adopt Example1 Injury pipeline; add .flow() for enabling bottom-up pipeline execution (#32)
* add example1/injury pipeline example
* add dotenv
* update various api
2023-10-02 16:24:56 +07:00

95 lines
3.1 KiB
Python

from typing import List, Type, TypeVar
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import BaseMessage, HumanMessage
from theflow.base import Param
from ...base import BaseComponent
from ..base import LLMInterface
Message = TypeVar("Message", bound=BaseMessage)
class ChatLLM(BaseComponent):
def flow(self):
if self.inflow is None:
raise ValueError("No inflow provided.")
if not isinstance(self.inflow, BaseComponent):
raise ValueError(
f"inflow must be a BaseComponent, found {type(self.inflow)}"
)
text = self.inflow.flow().text
return self.__call__(text)
class LangchainChatLLM(ChatLLM):
_lc_class: Type[BaseLanguageModel]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__:
self._kwargs[param] = params.pop(param)
super().__init__(**params)
@Param.decorate(no_cache=True)
def agent(self) -> BaseLanguageModel:
return self._lc_class(**self._kwargs)
def run_raw(self, text: str, **kwargs) -> LLMInterface:
message = HumanMessage(content=text)
return self.run_document([message], **kwargs)
def run_batch_raw(self, text: List[str], **kwargs) -> List[LLMInterface]:
inputs = [[HumanMessage(content=each)] for each in text]
return self.run_batch_document(inputs, **kwargs)
def run_document(self, text: List[Message], **kwargs) -> LLMInterface:
pred = self.agent.generate([text], **kwargs) # type: ignore
all_text = [each.text for each in pred.generations[0]]
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=pred.llm_output["token_usage"]["completion_tokens"],
total_tokens=pred.llm_output["token_usage"]["total_tokens"],
prompt_tokens=pred.llm_output["token_usage"]["prompt_tokens"],
logits=[],
)
def run_batch_document(
self, text: List[List[Message]], **kwargs
) -> List[LLMInterface]:
outputs = []
for each_text in text:
outputs.append(self.run_document(each_text, **kwargs))
return outputs
def is_document(self, text, **kwargs) -> bool:
if isinstance(text, str):
return False
elif isinstance(text, List) and isinstance(text[0], str):
return False
return True
def is_batch(self, text, **kwargs) -> bool:
if isinstance(text, str):
return False
elif isinstance(text, List):
if isinstance(text[0], BaseMessage):
return False
return True
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)