* Move kotaemon and ktem into same folder * Update docs * Update CI * Resolve mypy, isorts * Re-allow test pdf files
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
import json
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
import pytest
|
|
from index import ReaderIndexingPipeline
|
|
from kotaemon.llms import AzureChatOpenAI
|
|
from openai.resources.embeddings import Embeddings
|
|
from openai.types.chat.chat_completion import ChatCompletion
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
|
|
openai_embedding = json.load(f)
|
|
|
|
|
|
_openai_chat_completion_response = ChatCompletion.parse_obj(
|
|
{
|
|
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
|
|
"object": "chat.completion",
|
|
"created": 1692338378,
|
|
"model": "gpt-35-turbo",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"finish_reason": "stop",
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": "Hello! How can I assist you today?",
|
|
"function_call": None,
|
|
"tool_calls": None,
|
|
},
|
|
}
|
|
],
|
|
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
|
|
}
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def mock_openai_embedding(monkeypatch):
|
|
monkeypatch.setattr(Embeddings, "create", lambda *args, **kwargs: openai_embedding)
|
|
|
|
|
|
@patch(
|
|
"openai.resources.chat.completions.Completions.create",
|
|
side_effect=lambda *args, **kwargs: _openai_chat_completion_response,
|
|
)
|
|
def test_ingest_pipeline(patch, mock_openai_embedding, tmp_path):
|
|
indexing_pipeline = ReaderIndexingPipeline(
|
|
storage_path=tmp_path,
|
|
)
|
|
indexing_pipeline.indexing_vector_pipeline.embedding.openai_api_key = "some-key"
|
|
input_file_path = Path(__file__).parent / "resources/dummy.pdf"
|
|
|
|
# call ingestion pipeline
|
|
indexing_pipeline(input_file_path, force_reindex=True)
|
|
retrieving_pipeline = indexing_pipeline.to_retrieving_pipeline()
|
|
|
|
results = retrieving_pipeline("This is a query")
|
|
assert len(results) == 1
|
|
|
|
# create llm
|
|
llm = AzureChatOpenAI(
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
openai_api_version="2023-03-15-preview",
|
|
deployment_name="gpt35turbo",
|
|
temperature=0,
|
|
)
|
|
qa_pipeline = indexing_pipeline.to_qa_pipeline(llm=llm, openai_api_key="some-key")
|
|
response = qa_pipeline("Summarize this document.")
|
|
assert response
|