kotaemon/tests/test_llms_chat_models.py
Nguyen Trung Duc (john) d79b3744cb Simplify the BaseComponent inteface (#64)
This change remove `BaseComponent`'s:

- run_raw
- run_batch_raw
- run_document
- run_batch_document
- is_document
- is_batch

Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type.

To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components.

Tests are updated accordingly.

Commit changes:

* Add kwargs to vector store's query
* Simplify the BaseComponent
* Update tests
* Remove support for Python 3.8 and 3.9
* Bump version 0.3.0
* Fix github PR caching still use old environment after bumping version

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-13 15:10:18 +07:00

70 lines
2.2 KiB
Python

from unittest.mock import patch
from langchain.chat_models import AzureChatOpenAI as AzureChatOpenAILC
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
from openai.types.chat.chat_completion import ChatCompletion
from kotaemon.llms.base import LLMInterface
from kotaemon.llms.chats.openai import AzureChatOpenAI
_openai_chat_completion_response = ChatCompletion.parse_obj(
{
"id": "chatcmpl-7qyuw6Q1CFCpcKsMdFkmUPUa7JP2x",
"object": "chat.completion",
"created": 1692338378,
"model": "gpt-35-turbo",
"system_fingerprint": None,
"choices": [
{
"index": 0,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": "Hello! How can I assist you today?",
"function_call": None,
"tool_calls": None,
},
}
],
"usage": {"completion_tokens": 9, "prompt_tokens": 10, "total_tokens": 19},
}
)
@patch(
"openai.resources.chat.completions.Completions.create",
side_effect=lambda *args, **kwargs: _openai_chat_completion_response,
)
def test_azureopenai_model(openai_completion):
model = AzureChatOpenAI(
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
openai_api_version="2023-03-15-preview",
deployment_name="gpt35turbo",
temperature=0,
)
assert isinstance(
model.agent, AzureChatOpenAILC
), "Agent not wrapped in Langchain's AzureChatOpenAI"
# test for str input - stream mode
output = model("hello world")
assert isinstance(
output, LLMInterface
), "Output for single text is not LLMInterface"
openai_completion.assert_called()
# test for list[message] input - stream mode
messages = [
SystemMessage(content="You are a philosohper"),
HumanMessage(content="What is the meaning of life"),
AIMessage(content="42"),
HumanMessage(content="What is the meaning of 42"),
]
output = model(messages)
assert isinstance(
output, LLMInterface
), "Output for single text is not LLMInterface"
openai_completion.assert_called()