kotaemon/tests/test_indexing_retrieval.py
Nguyen Trung Duc (john) 620b2b03ca [AUR-392, AUR-413, AUR-414] Define base vector store, and make use of ChromaVectorStore from llama_index. Indexing and retrieving vectors with vector store (#18)
Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
2023-09-14 14:18:20 +07:00

60 lines
2.1 KiB
Python

import json
from pathlib import Path
import pytest
from openai.api_resources.embedding import Embedding
from kotaemon.documents.base import Document
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
from kotaemon.vectorstores import ChromaVectorStore
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
openai_embedding = json.load(f)
@pytest.fixture(scope="function")
def mock_openai_embedding(monkeypatch):
monkeypatch.setattr(Embedding, "create", lambda *args, **kwargs: openai_embedding)
def test_indexing(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
)
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
pipeline(text=Document(text="Hello world"))
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
def test_retrieving(mock_openai_embedding, tmp_path):
db = ChromaVectorStore(path=str(tmp_path))
embedding = AzureOpenAIEmbeddings(
model="text-embedding-ada-002",
deployment="embedding-deployment",
openai_api_base="https://test.openai.azure.com/",
openai_api_key="some-key",
)
index_pipeline = IndexVectorStoreFromDocumentPipeline(
vector_store=db, embedding=embedding
)
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
vector_store=db, embedding=embedding
)
index_pipeline(text=Document(text="Hello world"))
output = retrieval_pipeline(text=["Hello world", "Hello world"])
assert len(output) == 2, "Expected 2 results"
assert output[0] == output[1], "Expected identical results"