kotaemon/knowledgehub/pipelines/agents/rewoo/solver.py
Nguyen Trung Duc (john) 693ed39de4 Move prompts into LLMs module (#70)
Since the only usage of prompt is within LLMs, it is reasonable to keep it within the LLM module. This way, it would be easier to discover module, and make the code base less complicated.

Changes:

* Move prompt components into llms
* Bump version 0.3.1
* Make pip install dependencies in eager mode

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-14 16:00:10 +07:00

67 lines
2.3 KiB
Python

from typing import Any, List, Optional, Union
from kotaemon.base import BaseComponent
from kotaemon.llms import PromptTemplate
from ..base import BaseLLM
from ..output.base import BaseScratchPad
from .prompt import few_shot_solver_prompt, zero_shot_solver_prompt
class Solver(BaseComponent):
model: BaseLLM
prompt_template: Optional[PromptTemplate] = None
examples: Optional[Union[str, List[str]]] = None
def _compose_fewshot_prompt(self) -> str:
if self.examples is None:
return ""
if isinstance(self.examples, str):
return self.examples
else:
return "\n\n".join([e.strip("\n") for e in self.examples])
def _compose_prompt(self, instruction, plan_evidence) -> str:
"""
Compose the prompt from template, plan&evidence, examples and instruction.
"""
fewshot = self._compose_fewshot_prompt()
if self.prompt_template is not None:
if "fewshot" in self.prompt_template.placeholders:
return self.prompt_template.populate(
plan_evidence=plan_evidence, fewshot=fewshot, task=instruction
)
else:
return self.prompt_template.populate(
plan_evidence=plan_evidence, task=instruction
)
else:
if self.examples is not None:
return few_shot_solver_prompt.populate(
plan_evidence=plan_evidence, fewshot=fewshot, task=instruction
)
else:
return zero_shot_solver_prompt.populate(
plan_evidence=plan_evidence, task=instruction
)
def run(
self,
instruction: str,
plan_evidence: str,
output: BaseScratchPad = BaseScratchPad(),
) -> Any:
response = None
output.info("Running Solver")
output.debug(f"Instruction: {instruction}")
output.debug(f"Plan Evidence: {plan_evidence}")
prompt = self._compose_prompt(instruction, plan_evidence)
output.debug(f"Prompt: {prompt}")
try:
response = self.model(prompt)
output.info("Solver run successful.")
except ValueError:
output.error("Solver failed to retrieve response from LLM")
return response