This change remove `BaseComponent`'s: - run_raw - run_batch_raw - run_document - run_batch_document - is_document - is_batch Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type. To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components. Tests are updated accordingly. Commit changes: * Add kwargs to vector store's query * Simplify the BaseComponent * Update tests * Remove support for Python 3.8 and 3.9 * Bump version 0.3.0 * Fix github PR caching still use old environment after bumping version --------- Co-authored-by: ian <ian@cinnamon.is>
91 lines
3.0 KiB
Python
91 lines
3.0 KiB
Python
import json
|
|
from pathlib import Path
|
|
from unittest.mock import patch
|
|
|
|
from kotaemon.embeddings.cohere import CohereEmbdeddings
|
|
from kotaemon.embeddings.huggingface import HuggingFaceEmbeddings
|
|
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai_batch.json") as f:
|
|
openai_embedding_batch = json.load(f)
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
|
|
openai_embedding = json.load(f)
|
|
|
|
|
|
@patch(
|
|
"openai.resources.embeddings.Embeddings.create",
|
|
side_effect=lambda *args, **kwargs: openai_embedding,
|
|
)
|
|
def test_azureopenai_embeddings_raw(openai_embedding_call):
|
|
model = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
output = model("Hello world")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], list)
|
|
assert isinstance(output[0][0], float)
|
|
openai_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"openai.resources.embeddings.Embeddings.create",
|
|
side_effect=lambda *args, **kwargs: openai_embedding_batch,
|
|
)
|
|
def test_azureopenai_embeddings_batch_raw(openai_embedding_call):
|
|
model = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
output = model(["Hello world", "Goodbye world"])
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], list)
|
|
assert isinstance(output[0][0], float)
|
|
openai_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"sentence_transformers.SentenceTransformer",
|
|
side_effect=lambda *args, **kwargs: None,
|
|
)
|
|
@patch(
|
|
"langchain.embeddings.huggingface.HuggingFaceBgeEmbeddings.embed_documents",
|
|
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
|
)
|
|
def test_huggingface_embddings(
|
|
langchain_huggingface_embedding_call, sentence_transformers_init
|
|
):
|
|
model = HuggingFaceEmbeddings(
|
|
model_name="intfloat/multilingual-e5-large",
|
|
model_kwargs={"device": "cpu"},
|
|
encode_kwargs={"normalize_embeddings": False},
|
|
)
|
|
|
|
output = model("Hello World")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], list)
|
|
assert isinstance(output[0][0], float)
|
|
sentence_transformers_init.assert_called()
|
|
langchain_huggingface_embedding_call.assert_called()
|
|
|
|
|
|
@patch(
|
|
"langchain.embeddings.cohere.CohereEmbeddings.embed_documents",
|
|
side_effect=lambda *args, **kwargs: [[1.0, 2.1, 3.2]],
|
|
)
|
|
def test_cohere_embeddings(langchain_cohere_embedding_call):
|
|
model = CohereEmbdeddings(
|
|
model="embed-english-light-v2.0", cohere_api_key="my-api-key"
|
|
)
|
|
|
|
output = model("Hello World")
|
|
assert isinstance(output, list)
|
|
assert isinstance(output[0], list)
|
|
assert isinstance(output[0][0], float)
|
|
langchain_cohere_embedding_call.assert_called()
|