Design the base interface of vector store, and apply it to the Chroma Vector Store (wrapped around llama_index's implementation). Provide the pipelines to populate and retrieve from vector store.
60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
import json
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
from openai.api_resources.embedding import Embedding
|
|
|
|
from kotaemon.documents.base import Document
|
|
from kotaemon.embeddings.openai import AzureOpenAIEmbeddings
|
|
from kotaemon.pipelines.indexing import IndexVectorStoreFromDocumentPipeline
|
|
from kotaemon.pipelines.retrieving import RetrieveDocumentFromVectorStorePipeline
|
|
from kotaemon.vectorstores import ChromaVectorStore
|
|
|
|
with open(Path(__file__).parent / "resources" / "embedding_openai.json") as f:
|
|
openai_embedding = json.load(f)
|
|
|
|
|
|
@pytest.fixture(scope="function")
|
|
def mock_openai_embedding(monkeypatch):
|
|
monkeypatch.setattr(Embedding, "create", lambda *args, **kwargs: openai_embedding)
|
|
|
|
|
|
def test_indexing(mock_openai_embedding, tmp_path):
|
|
db = ChromaVectorStore(path=str(tmp_path))
|
|
embedding = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
|
|
pipeline = IndexVectorStoreFromDocumentPipeline(
|
|
vector_store=db, embedding=embedding
|
|
)
|
|
assert pipeline.vector_store._collection.count() == 0, "Expected empty collection"
|
|
pipeline(text=Document(text="Hello world"))
|
|
assert pipeline.vector_store._collection.count() == 1, "Index 1 item"
|
|
|
|
|
|
def test_retrieving(mock_openai_embedding, tmp_path):
|
|
db = ChromaVectorStore(path=str(tmp_path))
|
|
embedding = AzureOpenAIEmbeddings(
|
|
model="text-embedding-ada-002",
|
|
deployment="embedding-deployment",
|
|
openai_api_base="https://test.openai.azure.com/",
|
|
openai_api_key="some-key",
|
|
)
|
|
|
|
index_pipeline = IndexVectorStoreFromDocumentPipeline(
|
|
vector_store=db, embedding=embedding
|
|
)
|
|
retrieval_pipeline = RetrieveDocumentFromVectorStorePipeline(
|
|
vector_store=db, embedding=embedding
|
|
)
|
|
|
|
index_pipeline(text=Document(text="Hello world"))
|
|
output = retrieval_pipeline(text=["Hello world", "Hello world"])
|
|
|
|
assert len(output) == 2, "Expected 2 results"
|
|
assert output[0] == output[1], "Expected identical results"
|