kotaemon/libs/ktem/ktem/utils/visualize_cited.py
KennyWu d127fec9f7
feat: support for visualizing citation results (via embeddings) (#461)
* feat:support for visualizing citation results (via embeddings)

Signed-off-by: Kennywu <jdlow@live.cn>

* fix: remove ktem dependency in visualize_cited

* fix: limit onnx version for fastembed

* fix: test case of indexing

* fix: minor update

* fix: chroma req

* fix: chroma req

---------

Signed-off-by: Kennywu <jdlow@live.cn>
Co-authored-by: Tadashi <tadashi@cinnamon.is>
2024-11-05 14:02:57 +07:00

143 lines
4.9 KiB
Python

"""
This module aims to project high-dimensional embeddings
into a lower-dimensional space for visualization.
Refs:
1. [RAGxplorer](https://github.com/gabrielchua/RAGxplorer)
2. [RAGVizExpander](https://github.com/KKenny0/RAGVizExpander)
"""
from typing import List, Tuple
import numpy as np
import pandas as pd
import plotly.graph_objs as go
import umap
from kotaemon.base import BaseComponent
from kotaemon.embeddings import BaseEmbeddings
VISUALIZATION_SETTINGS = {
"Original Query": {"color": "red", "opacity": 1, "symbol": "cross", "size": 15},
"Retrieved": {"color": "green", "opacity": 1, "symbol": "circle", "size": 10},
"Chunks": {"color": "blue", "opacity": 0.4, "symbol": "circle", "size": 10},
"Sub-Questions": {"color": "purple", "opacity": 1, "symbol": "star", "size": 15},
}
class CreateCitationVizPipeline(BaseComponent):
"""Creating PlotData for visualizing query results"""
embedding: BaseEmbeddings
projector: umap.UMAP = None
def _set_up_umap(self, embeddings: np.ndarray):
umap_transform = umap.UMAP().fit(embeddings)
return umap_transform
def _project_embeddings(self, embeddings, umap_transform) -> np.ndarray:
umap_embeddings = np.empty((len(embeddings), 2))
for i, embedding in enumerate(embeddings):
umap_embeddings[i] = umap_transform.transform([embedding])
return umap_embeddings
def _get_projections(self, embeddings, umap_transform):
projections = self._project_embeddings(embeddings, umap_transform)
x = projections[:, 0]
y = projections[:, 1]
return x, y
def _prepare_projection_df(
self,
document_projections: Tuple[np.ndarray, np.ndarray],
document_text: List[str],
plot_size: int = 3,
) -> pd.DataFrame:
"""Prepares a DataFrame for visualization from projections and texts.
Args:
document_projections (Tuple[np.ndarray, np.ndarray]):
Tuple of X and Y coordinates of document projections.
document_text (List[str]): List of document texts.
"""
df = pd.DataFrame({"x": document_projections[0], "y": document_projections[1]})
df["document"] = document_text
df["document_cleaned"] = df.document.str.wrap(50).apply(
lambda x: x.replace("\n", "<br>")[:512] + "..."
)
df["size"] = plot_size
df["category"] = "Retrieved"
return df
def _plot_embeddings(self, df: pd.DataFrame) -> go.Figure:
"""
Creates a Plotly figure to visualize the embeddings.
Args:
df (pd.DataFrame): DataFrame containing the data to visualize.
Returns:
go.Figure: A Plotly figure object for visualization.
"""
fig = go.Figure()
for category in df["category"].unique():
category_df = df[df["category"] == category]
settings = VISUALIZATION_SETTINGS.get(
category,
{"color": "grey", "opacity": 1, "symbol": "circle", "size": 10},
)
fig.add_trace(
go.Scatter(
x=category_df["x"],
y=category_df["y"],
mode="markers",
name=category,
marker=dict(
color=settings["color"],
opacity=settings["opacity"],
symbol=settings["symbol"],
size=settings["size"],
line_width=0,
),
hoverinfo="text",
text=category_df["document_cleaned"],
)
)
fig.update_layout(
height=500,
legend=dict(y=100, x=0.5, xanchor="center", yanchor="top", orientation="h"),
)
return fig
def run(self, context: List[str], question: str):
embed_contexts = self.embedding(context)
context_embeddings = np.array([d.embedding for d in embed_contexts])
self.projector = self._set_up_umap(embeddings=context_embeddings)
embed_query = self.embedding(question)
query_projection = self._get_projections(
embeddings=[embed_query[0].embedding], umap_transform=self.projector
)
viz_query_df = pd.DataFrame(
{
"x": [query_projection[0][0]],
"y": [query_projection[1][0]],
"document_cleaned": question,
"category": "Original Query",
"size": 5,
}
)
context_projections = self._get_projections(
embeddings=context_embeddings, umap_transform=self.projector
)
viz_base_df = self._prepare_projection_df(
document_projections=context_projections, document_text=context
)
visualization_df = pd.concat([viz_base_df, viz_query_df], axis=0)
fig = self._plot_embeddings(visualization_df)
return fig