kotaemon/knowledgehub/llms/chats/base.py
Nguyen Trung Duc (john) d79b3744cb Simplify the BaseComponent inteface (#64)
This change remove `BaseComponent`'s:

- run_raw
- run_batch_raw
- run_document
- run_batch_document
- is_document
- is_batch

Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type.

To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components.

Tests are updated accordingly.

Commit changes:

* Add kwargs to vector store's query
* Simplify the BaseComponent
* Update tests
* Remove support for Python 3.8 and 3.9
* Bump version 0.3.0
* Fix github PR caching still use old environment after bumping version

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-13 15:10:18 +07:00

106 lines
3.3 KiB
Python

from __future__ import annotations
import logging
from typing import Type
from langchain.chat_models.base import BaseChatModel
from langchain.schema.messages import BaseMessage, HumanMessage
from theflow.base import Param
from ...base import BaseComponent
from ..base import LLMInterface
logger = logging.getLogger(__name__)
class ChatLLM(BaseComponent):
def flow(self):
if self.inflow is None:
raise ValueError("No inflow provided.")
if not isinstance(self.inflow, BaseComponent):
raise ValueError(
f"inflow must be a BaseComponent, found {type(self.inflow)}"
)
text = self.inflow.flow().text
return self.__call__(text)
class LangchainChatLLM(ChatLLM):
_lc_class: Type[BaseChatModel]
def __init__(self, **params):
if self._lc_class is None:
raise AttributeError(
"Should set _lc_class attribute to the LLM class from Langchain "
"if using LLM from Langchain"
)
self._kwargs: dict = {}
for param in list(params.keys()):
if param in self._lc_class.__fields__:
self._kwargs[param] = params.pop(param)
super().__init__(**params)
@Param.auto(cache=False)
def agent(self) -> BaseChatModel:
return self._lc_class(**self._kwargs)
def run(
self, messages: str | BaseMessage | list[BaseMessage], **kwargs
) -> LLMInterface:
"""Generate response from messages
Args:
messages: history of messages to generate response from
**kwargs: additional arguments to pass to the langchain chat model
Returns:
LLMInterface: generated response
"""
input_: list[BaseMessage] = []
if isinstance(messages, str):
input_ = [HumanMessage(content=messages)]
elif isinstance(messages, BaseMessage):
input_ = [messages]
else:
input_ = messages
pred = self.agent.generate(messages=[input_], **kwargs)
all_text = [each.text for each in pred.generations[0]]
completion_tokens, total_tokens, prompt_tokens = 0, 0, 0
try:
if pred.llm_output is not None:
completion_tokens = pred.llm_output["token_usage"]["completion_tokens"]
total_tokens = pred.llm_output["token_usage"]["total_tokens"]
prompt_tokens = pred.llm_output["token_usage"]["prompt_tokens"]
except Exception:
logger.warning(
f"Cannot get token usage from LLM output for {self._lc_class.__name__}"
)
return LLMInterface(
text=all_text[0] if len(all_text) > 0 else "",
candidates=all_text,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens=prompt_tokens,
logits=[],
)
def __setattr__(self, name, value):
if name in self._lc_class.__fields__:
self._kwargs[name] = value
setattr(self.agent, name, value)
else:
super().__setattr__(name, value)
def __getattr__(self, name):
if name in self._lc_class.__fields__:
return getattr(self.agent, name)
return super().__getattr__(name) # type: ignore