kotaemon/knowledgehub/pipelines/agents/rewoo/solver.py
Tuan Anh Nguyen Dang (Tadashi_Cin) 91048770fa [AUR-431, AUR-435] Add Agent Interface and ReWOO Agent implementation (#31)
* add base Tool

* minor update test_tool

* update test dependency

* update test dependency

* Fix namespace conflict

* update test

* add base Agent Interface, add ReWoo Agent

* minor update

* update test

* fix typo

* remove unneeded print

* update rewoo agent

---------

Co-authored-by: trducng <trungduc1992@gmail.com>
2023-10-01 11:53:08 +07:00

67 lines
2.3 KiB
Python

from typing import Any, List, Optional, Union
from kotaemon.base import BaseComponent
from kotaemon.prompt.template import PromptTemplate
from ..base import BaseLLM
from ..output.base import BaseScratchPad
from .prompt import few_shot_solver_prompt, zero_shot_solver_prompt
class Solver(BaseComponent):
model: BaseLLM
prompt_template: Optional[PromptTemplate] = None
examples: Optional[Union[str, List[str]]] = None
def _compose_fewshot_prompt(self) -> str:
if self.examples is None:
return ""
if isinstance(self.examples, str):
return self.examples
else:
return "\n\n".join([e.strip("\n") for e in self.examples])
def _compose_prompt(self, instruction, plan_evidence) -> str:
"""
Compose the prompt from template, plan&evidence, examples and instruction.
"""
fewshot = self._compose_fewshot_prompt()
if self.prompt_template is not None:
if "fewshot" in self.prompt_template.placeholders:
return self.prompt_template.populate(
plan_evidence=plan_evidence, fewshot=fewshot, task=instruction
)
else:
return self.prompt_template.populate(
plan_evidence=plan_evidence, task=instruction
)
else:
if self.examples is not None:
return few_shot_solver_prompt.populate(
plan_evidence=plan_evidence, fewshot=fewshot, task=instruction
)
else:
return zero_shot_solver_prompt.populate(
plan_evidence=plan_evidence, task=instruction
)
def run(
self,
instruction: str,
plan_evidence: str,
output: BaseScratchPad = BaseScratchPad(),
) -> Any:
response = None
output.info("Running Solver")
output.debug(f"Instruction: {instruction}")
output.debug(f"Plan Evidence: {plan_evidence}")
prompt = self._compose_prompt(instruction, plan_evidence)
output.debug(f"Prompt: {prompt}")
try:
response = self.model(prompt)
output.info("Solver run successful.")
except ValueError:
output.error("Solver failed to retrieve response from LLM")
return response