Commit Graph

12 Commits

Author SHA1 Message Date
Nguyen Trung Duc (john)
693ed39de4 Move prompts into LLMs module (#70)
Since the only usage of prompt is within LLMs, it is reasonable to keep it within the LLM module. This way, it would be easier to discover module, and make the code base less complicated.

Changes:

* Move prompt components into llms
* Bump version 0.3.1
* Make pip install dependencies in eager mode

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-14 16:00:10 +07:00
Nguyen Trung Duc (john)
8532138842 Move Document and other interface into base/schema (#69) 2023-11-14 11:51:10 +07:00
Nguyen Trung Duc (john)
d79b3744cb Simplify the BaseComponent inteface (#64)
This change remove `BaseComponent`'s:

- run_raw
- run_batch_raw
- run_document
- run_batch_document
- is_document
- is_batch

Each component is expected to support multiple types of inputs and a single type of output. Since we want the component to work out-of-the-box with both standardized and customized use cases, supporting multiple types of inputs are expected. At the same time, to reduce the complexity of understanding how to use a component, we restrict a component to only have a single output type.

To accommodate these changes, we also refactor some components to remove their run_raw, run_batch_raw... methods, and to decide the common output interface for those components.

Tests are updated accordingly.

Commit changes:

* Add kwargs to vector store's query
* Simplify the BaseComponent
* Update tests
* Remove support for Python 3.8 and 3.9
* Bump version 0.3.0
* Fix github PR caching still use old environment after bumping version

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-13 15:10:18 +07:00
Nguyen Trung Duc (john)
9035e25666 Upgrade the declarative pipeline for cleaner interface (#51) 2023-10-24 11:12:22 +07:00
Nguyen Trung Duc (john)
6e7905cbc0 [AUR-411] Adopt to Example2 project (#28)
Add the chatbot from Example2. Create the UI for chat.
2023-10-12 15:13:25 +07:00
ian_Cin
d83c22aa4e [AUR-395, AUR-415] Adopt Example1 Injury pipeline; add .flow() for enabling bottom-up pipeline execution (#32)
* add example1/injury pipeline example
* add dotenv
* update various api
2023-10-02 16:24:56 +07:00
Tuan Anh Nguyen Dang (Tadashi_Cin)
3cceec63ef [AUR-431] Add ReAct Agent (#34)
* add base Tool

* minor update test_tool

* update test dependency

* update test dependency

* Fix namespace conflict

* update test

* add base Agent Interface, add ReWoo Agent

* minor update

* update test

* fix typo

* remove unneeded print

* update rewoo agent

* add LLMTool

* update BaseAgent type

* add ReAct agent

* add ReAct agent

* minor update

* minor update

* minor update

* minor update

* update docstring

* fix max_iteration

---------

Co-authored-by: trducng <trungduc1992@gmail.com>
2023-10-02 11:29:12 +07:00
Nguyen Trung Duc (john)
c6dd01e820 [AUR-338, AUR-406, AUR-407] Export pipeline to config for PromptUI. Construct PromptUI dynamically based on config. (#16)
From pipeline > config > UI. Provide example project for promptui

- Pipeline to config: `kotaemon.contribs.promptui.config.export_pipeline_to_config`. The config follows schema specified in this document: https://cinnamon-ai.atlassian.net/wiki/spaces/ATM/pages/2748711193/Technical+Detail. Note: this implementation exclude the logs, which will be handled in AUR-408.
- Config to UI: `kotaemon.contribs.promptui.build_from_yaml`
- Example project is located at `examples/promptui/`
2023-09-21 14:27:23 +07:00
ian_Cin
b794051653 [AUR-421] base output post-processor that works using regex. (#20) 2023-09-19 19:54:44 +07:00
Nguyen Trung Duc (john)
c339912312 [AUR-389] Add base interface and embedding model (#17)
This change provides the base interface of an embedding, and wrap the Langchain's OpenAI embedding. Usage as follow:

```python
from kotaemon.embeddings import AzureOpenAIEmbeddings

model = AzureOpenAIEmbeddings(
    model="text-embedding-ada-002",
    deployment="embedding-deployment",
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
)
output = model("Hello world")
```
2023-09-14 14:08:58 +07:00
ian_Cin
5241edbc46 [AUR-361] Setup pre-commit, pytest, GitHub actions, ssh-secret (#3)
Co-authored-by: trducng <trungduc1992@gmail.com>
2023-08-30 07:22:01 +07:00
Nguyen Trung Duc (john)
c3c25db48c [AUR-385, AUR-388] Declare BaseComponent and decide LLM call interface (#2)
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873
- Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`:

```python
from kotaemon.llms.chats.openai import AzureChatOpenAI

model = AzureChatOpenAI(
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
    openai_api_version="2023-03-15-preview",
    deployment_name="gpt35turbo",
    temperature=0,
    request_timeout=60,
)
output = model("hello world")
```

For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow:

- Completion LLM component:
```python
class CompletionLLM:

    def run_raw(self, text: str) -> LLMInterface:
        # Run text completion: str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run text completion in batch: list[str] in -> list[LLMInterface] out

# run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case
```

- Chat LLM component:
```python
class ChatLLM:
    def run_raw(self, text: str) -> LLMInterface:
        # Run chat completion (no chat history): str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out

    def run_document(self, text: list[BaseMessage]) -> LLMInterface:
        # Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out

    def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]:
        # Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out
```

- The LLMInterface is as follow:

```python
@dataclass
class LLMInterface:
    text: list[str]
    completion_tokens: int = -1
    total_tokens: int = -1
    prompt_tokens: int = -1
    logits: list[list[float]] = field(default_factory=list)
```
2023-08-29 15:47:12 +07:00