Commit Graph

4 Commits

Author SHA1 Message Date
ian_Cin
797df5a69c refractor agents (#100)
* refractor agents

* minor cosmetic, add terminal ui for cli

* pump to 0.3.4

* Add temporary path

* fix unclose files in tests

---------

Co-authored-by: trducng <trungduc1992@gmail.com>
2023-12-06 17:06:29 +07:00
Duc Nguyen (john)
0ce3a8832f Provide type hints for pass-through Langchain and Llama-index objects (#95) 2023-12-04 10:59:13 +07:00
Nguyen Trung Duc (john)
693ed39de4 Move prompts into LLMs module (#70)
Since the only usage of prompt is within LLMs, it is reasonable to keep it within the LLM module. This way, it would be easier to discover module, and make the code base less complicated.

Changes:

* Move prompt components into llms
* Bump version 0.3.1
* Make pip install dependencies in eager mode

---------

Co-authored-by: ian <ian@cinnamon.is>
2023-11-14 16:00:10 +07:00
Nguyen Trung Duc (john)
c3c25db48c [AUR-385, AUR-388] Declare BaseComponent and decide LLM call interface (#2)
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873
- Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`:

```python
from kotaemon.llms.chats.openai import AzureChatOpenAI

model = AzureChatOpenAI(
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
    openai_api_version="2023-03-15-preview",
    deployment_name="gpt35turbo",
    temperature=0,
    request_timeout=60,
)
output = model("hello world")
```

For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow:

- Completion LLM component:
```python
class CompletionLLM:

    def run_raw(self, text: str) -> LLMInterface:
        # Run text completion: str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run text completion in batch: list[str] in -> list[LLMInterface] out

# run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case
```

- Chat LLM component:
```python
class ChatLLM:
    def run_raw(self, text: str) -> LLMInterface:
        # Run chat completion (no chat history): str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out

    def run_document(self, text: list[BaseMessage]) -> LLMInterface:
        # Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out

    def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]:
        # Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out
```

- The LLMInterface is as follow:

```python
@dataclass
class LLMInterface:
    text: list[str]
    completion_tokens: int = -1
    total_tokens: int = -1
    prompt_tokens: int = -1
    logits: list[list[float]] = field(default_factory=list)
```
2023-08-29 15:47:12 +07:00