Commit Graph

154 Commits

Author SHA1 Message Date
ian_Cin
5241edbc46 [AUR-361] Setup pre-commit, pytest, GitHub actions, ssh-secret (#3)
Co-authored-by: trducng <trungduc1992@gmail.com>
2023-08-30 07:22:01 +07:00
Nguyen Trung Duc (john)
c3c25db48c [AUR-385, AUR-388] Declare BaseComponent and decide LLM call interface (#2)
- Use cases related to LLM call: https://cinnamon-ai.atlassian.net/browse/AUR-388?focusedCommentId=34873
- Sample usages: `test_llms_chat_models.py` and `test_llms_completion_models.py`:

```python
from kotaemon.llms.chats.openai import AzureChatOpenAI

model = AzureChatOpenAI(
    openai_api_base="https://test.openai.azure.com/",
    openai_api_key="some-key",
    openai_api_version="2023-03-15-preview",
    deployment_name="gpt35turbo",
    temperature=0,
    request_timeout=60,
)
output = model("hello world")
```

For the LLM-call component, I decide to wrap around Langchain's LLM models and Langchain's Chat models. And set the interface as follow:

- Completion LLM component:
```python
class CompletionLLM:

    def run_raw(self, text: str) -> LLMInterface:
        # Run text completion: str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run text completion in batch: list[str] in -> list[LLMInterface] out

# run_document and run_batch_document just reuse run_raw and run_batch_raw, due to unclear use case
```

- Chat LLM component:
```python
class ChatLLM:
    def run_raw(self, text: str) -> LLMInterface:
        # Run chat completion (no chat history): str in -> LLMInterface out

    def run_batch_raw(self, text: list[str]) -> list[LLMInterface]:
        # Run chat completion in batch mode (no chat history): list[str] in -> list[LLMInterface] out

    def run_document(self, text: list[BaseMessage]) -> LLMInterface:
        # Run chat completion (with chat history): list[langchain's BaseMessage] in -> LLMInterface out

    def run_batch_document(self, text: list[list[BaseMessage]]) -> list[LLMInterface]:
        # Run chat completion in batch mode (with chat history): list[list[langchain's BaseMessage]] in -> list[LLMInterface] out
```

- The LLMInterface is as follow:

```python
@dataclass
class LLMInterface:
    text: list[str]
    completion_tokens: int = -1
    total_tokens: int = -1
    prompt_tokens: int = -1
    logits: list[list[float]] = field(default_factory=list)
```
2023-08-29 15:47:12 +07:00
Nguyen Trung Duc (john)
e9d1d5c118 [AUR-401] Disable Haystack telemetry with monkey patching (#1)
Sample Haystack log when running a pipeline. Note: the `pipeline.classname` can leak company information.

```json
{
  "hardware.cpus": 16,
  "hardware.gpus": 0,
  "libraries.colab": false,
  "libraries.cuda": false,
  "libraries.haystack": "1.20.0rc0",
  "libraries.ipython": false,
  "libraries.pytest": false,
  "libraries.ray": false,
  "libraries.torch": false,
  "libraries.transformers": "4.31.0",
  "os.containerized": false,
  "os.family": "Linux",
  "os.machine": "x86_64",
  "os.version": "6.2.0-26-generic",
  "pipeline.classname": "TempPipeline",
  "pipeline.config_hash": "07a8eddd5a6e512c0d898c6d9f445ed9",
  "pipeline.nodes.PromptNode": 1,
  "pipeline.nodes.Shaper": 1,
  "pipeline.nodes.WebRetriever": 1,
  "pipeline.run_parameters.debug": false,
  "pipeline.run_parameters.documents": [
    0
  ],
  "pipeline.run_parameters.file_paths": 0,
  "pipeline.run_parameters.labels": 0,
  "pipeline.run_parameters.meta": 1,
  "pipeline.run_parameters.params": false,
  "pipeline.run_parameters.queries": true,
  "pipeline.runs": 1,
  "pipeline.type": "Query",
  "python.version": "3.10.12"
}
```

Solution: Haystack telemetry uses the `telemetry` variable, `posthog` library and `HAYSTACK_TELEMETRY_ENABLED` envar. We set the envar to False and make sure the relevant objects are disabled.
2023-08-22 10:02:46 +07:00
trducng
043209fda7 Initiate repository 2023-08-16 14:56:48 +07:00